BODOLAND UNIVERSITY

B.Sc. Syllabus in Chemistry under Choice Based Credit System (CBCS)

Bodoland University

Kokrajhar-783370, Assam, India

B.Sc. with Chemistry Honours

Sl. No.	CORE COURSE (14)	Ability Enhancement	Skill Enhancement	Discipline Specific Elective (DSE) (4)	Generic Elective
		Compulsory	Course (SEC) (2)	, , ,	(GE) (4)
		Course			
I	Inorganic Chemistry-I	(AECC) (2) (English/Hindi/			GE-1
	(4+2)	MIL			(Chemistry-1)
	Physical Chemistry-I (4+2)	Communication)			,
II	Organic Chemistry-I (4+2)	Environmental			GE-2
	Physical Chemistry-II (4+2)	Science			(Chemistry-2)
III	Inorganic Chemistry-II (4+2)		SEC-1		GE-3
	Organic Chemistry-II (4+2)		(Basic Analytical Chemistry)		(Chemistry-3)
	Physical Chemistry-III (4+2)				
IV	Inorganic Chemistry-III (4+2)		SEC-2		GE-4
	Organic Chemistry-III (4+2)		(Fuel Chemistry)		(Chemistry-4)
	Physical Chemistry-IV (4+2)				
V	Organic Chemistry-IV (4+2)			DSE-1	
				(Analytical	
				Methods in	
	Physical Chemistry-V (4+2)			Chemistry) DSE-2	
	Fhysical Chemistry-V (4+2)			(Instrumental	
				Methods of	
				Chemical Analysis)	
VI	Inorganic Chemistry-IV (4+2)			DSE-3	
				(Applications of	
				Computers in	
				Chemistry)	
	Organic Chemistry-V (4+2)			DSE-4	
				(Dissertation)	

- Chemistry Generic Elective (GE) papers for the honours students of other Departments/Disciplines (like Physics, Mathematics, Botany, Zoology, etc.). GE-1: Chemistry-1, GE-2: Chemistry-2, GE-3: Chemistry-3, GE-4: Chemistry-4.
- Chemistry honours students have to choose GE papers from other Departments/Disciplines. However, at least two GE Mathematics papers are compulsory for admission in M.Sc. Chemistry in Bodoland University.

Curriculum Structures for B.Sc. Chemistry Honours No. of papers =14+12=26 Total Credits = 140, Total Marks = 2400

	SEMESTER-I					
Paper Code	Course	L+T+P	Credit	End Sem	Internal	Total
				Marks	Marks	Marks
CHY-101H	CC 1: Inorganic	4+0+2	6	60(L)+20(P)	20	100
	Chemistry-I					
CHY-102H	CC 2: Physical	4+0+2	6	60(L)+20(P)	20	100
	Chemistry-I					
Paper	GE-1	4+0+2	6	60(L)+20(P)	20	100
COMM-	AECC-1: (English	2	2	50(L)	-	50
104HR	/Hindi/MIL					
	Communication)					
Total		20	20	290	60	350

	SEMESTER-II					
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
CHY-201H	CC 3: Organic Chemistry-I	4+0+2	6	60(L)+20(P)	20	100
CHY -202H	CC 4: Physical Chemistry-II	4+0+2	6	60(L)+20(P)	20	100
Paper	GE-2	4+0+2	6	60(L)+20(P)	20	100
ENV-204HR	AECC-2: Environmental Science	2	2	50(L)	-	50
Total			20	290	60	350

		SEMES'	TER-III			
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
CHY-301H	CC 5: Inorganic Chemistry-II	4+0+2	6	60(L)+20(P)	20	100
СНҮ-302Н	CC 6: Organic Chemistry-II	4+0+2	6	60(L)+20(P)	20	100
СНҮ-303Н	CC 7: Physical Chemistry-III	4+0+2	6	60(L)+20(P)	20	100
CHY-304HR	SEC-1: Basic Analytical Chemistry	2	2	50(L)	-	50
Paper	GE-3	4+0+2	6	60(L)+20(P)	20	100
Total			26	370	80	450

		SEM	ESTER-IV			
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
CHY-401H	CC 8: Inorganic Chemistry-III	4+0+2	6	60(L)+20(P)	20	100
СНҮ-402Н	CC 9: Organic Chemistry-III	4+0+2	6	60(L)+20(P)	20	100
СНҮ-403Н	CC 10: Physical Chemistry-IV	4+0+2	6	60(L)+20(P)	20	100
CHY-404HR	SEC-2: Fuel Chemistry	2	2	50(L)	-	50
Paper	GE-4	4+0+2	6	60(L)+20(P)	20	100
Total			26	370	80	450

		SEN	MESTER-V			
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
CHY-501H	CC 11: Organic Chemistry-IV	4+0+2	6	60(L)+20(P)	20	100
СНҮ-502Н	CC 12: Physical Chemistry-V	4+0+2	6	60(L)+20(P)	20	100
CHY-HR	DSE-1: Analytical Methods in Chemistry	4+0+2	6	60(L)+20(P)	20	100
CHY-HR	DSE-2: Instrumental Methods of Chemical Analysis	4+0+2	6	60(L)+20(P)	20	100
Total			24	320	80	400

	SEMESTER-VI					
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
CHY-601H	CC 13: Inorganic Chemistry-IV	4+0+2	6	60(L)+20(P)	20	100
СНҮ-602Н	CC 14: Organic Chemistry-V	4+0+2	6	60(L)+20(P)	20	100
СНҮ-Н	DSE-3: Applications of Computers in Chemistry	4+0+2	6	60(L)+20(P)	20	100
СНҮ-Н	DSE-4: (Project/Dissertation)	6	6	80	20	100
Total			24	320	80	400

B.Sc. HONOURS IN CHEMISTRY (CORE COURSES)

SEMESTER I

CHEMISTRY-CC 1: INORGANIC CHEMISTRY-I

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Atomic Structure:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams.

Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

(14 Lectures)

Periodicity of Elements:

- s, p, d, f block elements, the long form of periodic table. Detailed discussion of the following properties of the elements, with reference to s and p-block.
- (a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table.
- (b) Atomic radii (van der Waals)
- (c) Ionic and crystal radii.
- (d) Covalent radii (octahedral and tetrahedral)
- (e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy.
- (f) Electron gain enthalpy, trends of electron gain enthalpy.
- (g) Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity. Sanderson's electron density ratio.

(16 Lectures)

Chemical Bonding:

- (i) *Ionic bond:* General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation energy.
- (ii) Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO, NO, and their ions; HCl, BeF₂, CO₂, (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach)

and bond lengths.

Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization.

Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

- (iii) *Metallic Bond:* Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.
- (iv) Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process.

(26 Lectures)

Oxidation-Reduction:

Redox equations, Standard Electrode Potential and its application to inorganic reactions. Principles involved in volumetric analysis to be carried out in class.

(4 Lectures)

Reference Books:

Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry
Oxford, 1970
Atkins, P.W. & Paula, J. <i>Physical Chemistry</i> , 10 th Ed., Oxford University Press, 2014.
Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.
Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition
2002.

CHEMISTRY LAB- CC 1 LAB: 60 Lectures

(A) Titrimetric Analysis

- (i) Calibration and use of apparatus
- (ii) Preparation of solutions of different Molarity/Normality of titrants

(B) Acid-Base Titrations

- (i) Estimation of carbonate and hydroxide present together in mixture.
- (ii) Estimation of carbonate and bicarbonate present together in a mixture.
- (iii) Estimation of free alkali present in different soaps/detergents

(C) Oxidation-Reduction Titrimetry

- (i) Estimation of Fe (II) and oxalic acid using standardized KMnO₄ solution.
- (ii) Estimation of oxalic acid and sodium oxalate in a given mixture.
- (iii) Estimation of Fe(II) with K₂Cr₂O₇ using internal (diphenylamine, anthranilic acid) and external indicator.

Reference text:

1. Mendham, J., A. I. Vogel's *Quantitative Chemical Analysis* 6thEd., Pearson, 2009.

CHEMISTRY-CC 2: PHYSICAL CHEMISTRY-I

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Gaseous state:

Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.

Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities.

Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z, and its variation with pressure for different gases. Causes of deviation from ideal behaviour, van der Waals equation of state, its derivation and application in explaining real gas behaviour, mention of other equations of state (Berthelot, Dietrici); virial equation of state; van der Waals equation expressed in virial form and calculation of Boyle temperature. Isotherms of real gases and their comparison with van der Waals isotherms, continuity of states, critical state, relation between critical constants and van der Waals constants, law of corresponding states.

(18 Lectures)

Liquid state:

Qualitative treatment of the structure of the liquid state; Radial distribution function; physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents. Temperature variation of viscosity of liquids and comparison with that of gases.

Qualitative discussion of structure of water.

(6 Lectures)

Solid state:

Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Glasses and liquid crystals.

(16 Lectures)

Ionic equilibria:

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids

(exact treatment).

Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications; buffer capacity, buffer range, buffer action and applications of buffers in analytical chemistry and biochemical processes in the human body.

Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Qualitative treatment of acid – base titration curves (calculation of pH at various stages). Theory of acid–base indicators; selection of indicators and their limitations.

Multistage equilibria in polyelectrolyte systems; hydrolysis and hydrolysis constants.

(20 Lectures)

Reference Books:

Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10 Ed., Oxford University
Press (2014).
Ball, D. W. Physical Chemistry Thomson Press, India (2007).
Castellan, G. W. <i>Physical Chemistry</i> 4 th Ed. Narosa (2004). Mortimer, R. G. <i>Physical Chemistry</i> 3 rd Ed. Elsevier: NOIDA, UP (2009).
Mortimer, R. G. <i>Physical Chemistry</i> 3 rd Ed. Elsevier: NOIDA, UP (2009).
Engel, T. & Reid, P. <i>Physical Chemistry</i> 3 rd Ed. Pearson (2013).

CHEMISTRY LAB-CC 2 LAB: 60 Lectures

1. Surface tension measurements.

- a. Determine the surface tension by (i) drop number (ii) drop weight method.
- b. Study the variation of surface tension of detergent solutions with concentration.

2. Viscosity measurement using Ostwald's viscometer.

- a. Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature.
- b. Study the variation of viscosity of sucrose solution with the concentration of solute.

3. Indexing of a given powder diffraction pattern of a cubic crystalline system.

4. pH metry

- a. Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.
- b. Preparation of buffer solutions of different pH
 - i. Sodium acetate-acetic acid
 - ii. Ammonium chloride-ammonium hydroxide
- c. pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.
- d. Determination of dissociation constant of a weak acid.

Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R
Chand & Co.: New Delhi (2011).
Garland, C., W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical
Chemistry8 th Ed.; McGraw-Hill: New York (2003).
Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3 rd Ed.;
W.H. Freeman & Co.: New York (2003).

SEMESTER II

CHEMISTRY-CC 3: ORGANIC CHEMISTRY-I

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties.

Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength.

Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleophileity and basicity; Types, shape and their relative stability of carbocations, carbanions, free radicals and carbenes.

Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

(6 Lectures)

Stereochemistry:

Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions; Geometrical isomerism: cis-trans and, syn-anti isomerism E/Z notations with C.I.P rules.

Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemic mixture and resolution. Relative and absolute configuration: D/L and R/S designations.

(18 Lectures)

Chemistry of Aliphatic Hydrocarbons

A. Carbon-Carbon sigma bonds

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

B. Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.

Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ Anti-Markownikoff addition), mechanism of oxymercuration-demercuration, hydroboration-oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene.

Reactions of alkynes: Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes.

C. Cycloalkanes and Conformational Analysis

Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes: Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams.

(24 Lectures)

Aromatic Hydrocarbons

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups.

(12 Lectures)

Reference Books:

Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.
Ltd. (Pearson Education).
Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.
(Pearson Education).
Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of
Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London,
1994.
Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International,
2005.
McMurry, J.E. Fundamentals of Organic Chemistry, 7 th Ed. Cengage Learning India
Edition, 2013.

CHEMISTRY LAB-CC 3 LAB: 60 Lectures

- 1. Checking the calibration of the thermometer
- 2. Purification of organic compounds by crystallization using the following solvents:
 - a. Water
 - b. Alcohol
 - c. Alcohol-Water
- 3. Determination of the melting points of above compounds and unknown organic compounds (Kjeldhal method and electrically heated melting point apparatus)
- 4. Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- 5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100 °C by distillation and capillary method)
- 6. Chromatography

- a. Separation of a mixture of two amino acids by ascending and horizontal paper chromatography
- b. Separation of a mixture of two sugars by ascending paper chromatography
- c. Separation of a mixture of o- and p-nitrophenol or o- and p-aminophenol by thin layer chromatography (TLC)

Reference Books

- ☐ Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry*, Pearson Education (2009).
- □ Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry*, 5th Ed., Pearson (2012).

CHEMISTRY -CC 4: PHYSICAL CHEMISTRY-II

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Chemical Thermodynamics:

Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics.

First law: Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions.

Thermochemistry: Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoff's equations) and pressure on enthalpy of reactions. Adiabatic flame temperature, explosion temperature.

Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy. Calculation of entropy change for reversible and irreversible processes.

Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules.

Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state.

(36 Lectures)

Systems of Variable Composition:

Partial molar quantities, dependence of thermodynamic parameters on composition; Gibbs-Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases. (8 Lectures)

Chemical Equilibrium:

Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient. Coupling of exoergic and endoergic reactions. Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Free energy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibrium constants K_p , K_c and K_x . Le Chatelier principle (quantitative treatment); equilibrium between ideal gases and a pure condensed phase.

(8 Lectures)

Solutions and Colligative Properties:

Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Excess thermodynamic functions.

Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.

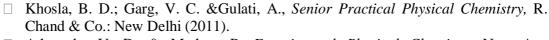
(8 Lectures)

Reference Books

Peter, A. & Paula, J. de. <i>Physical Chemistry</i> 10 th Ed., Oxford University Press (2014).
Castellan, G. W. <i>Physical Chemistry</i> 4 th Ed., Narosa (2004).
Engel, T. & Reid, P. <i>Physical Chemistry 3^{ra}Ed.</i> , Prentice-Hall (2012).
McQuarrie, D. A. & Simon, J. D. Molecular Thermodynamics Viva Books Pvt. Ltd.:
New Delhi (2004).
Assael, M. J.; Goodwin, A. R. H.; Stamatoudis, M.; Wakeham, W. A. & Will, S.
Commonly Asked Questions in Thermodynamics. CRC Press: NY (2011).
Levine, I.N. <i>Physical Chemistry</i> 6 th Ed., Tata McGraw Hill (2010).
Metz, C.R. 2000 solved problems in chemistry, Schaum Series (2006).

CHEMISTRY LAB- CC 4 LAB: 60 Lectures

Thermochemistry


- (a) Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system (method of back calculation of heat capacity of calorimeter from known enthalpy of solution or enthalpy of neutralization).
- (b) Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- (c) Calculation of the enthalpy of ionization of ethanoic acid.
- (d) Determination of heat capacity of the calorimeter and integral enthalpy (endothermic and exothermic) solution of salts.
- (e) Determination of basicity/proticity of a polyprotic acid by the thermochemical method in

terms of the changes of temperatures observed in the graph of temperature versus time for different additions of a base. Also calculate the enthalpy of neutralization of the first step.

- (f) Determination of enthalpy of hydration of copper sulphate.
- (g) Study of the solubility of benzoic acid in water and determination of ΔH .

Any other experiment carried out in the class.

Reference Books

□ Athawale, V. D. & Mathur, P. *Experimental Physical Chemistry* New Age International: New Delhi (2001).

SEMESTER III

CHEMISTRY-CC 5: INORGANIC CHEMISTRY-II

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

General Principles of Metallurgy

Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agent. Electrolytic Reduction, Hydrometallurgy. Methods of purification of metals: Electrolytic Kroll process, Parting process, van Arkel-de Boer process and Mond's process, Zone refining.

(6 Lectures)

Acids and Bases

Brönsted-Lowry concept of acid-base reactions, solvated proton, relative strength of acids, types of acid-base reactions, levelling solvents, Lewis acid-base concept, Classification of Lewis acids, Hard and Soft Acids and Bases (HSAB). Application of HSAB principle.

(8 Lectures)

Chemistry of *s* and *p* Block Elements:

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements.

Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate.

Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses.

Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens.

(30 Lectures)

Noble Gases:

Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF₂, XeF₄ and XeF₆; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF₂). Molecular shapes of noble gas compounds (VSEPR theory).

(8 Lectures)

Inorganic Polymers:

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes, and polysulphates.

(8 Lectures)

Reference Books:

Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.
Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of
Inorganic Chemistry 3 ^{ra} Ed., John Wiley Sons, N.Y. 1994.
Greenwood, N.N. & Earnshaw. Chemistry of the Elements,
Butterworth-Heinemann. 1997.
Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.
Rodger, G.E. <i>Inorganic and Solid State Chemistry</i> , Cengage Learning India Edition, 2002.
Miessler, G. L. & Donald, A. Tarr. <i>Inorganic Chemistry</i> 4 th Ed., Pearson, 2010.
Atkin, P. Shriver & Atkins' Inorganic Chemistry 5 th Ed. Oxford University
Press (2010).

CHEMISTRY LAB-CC 5 LAB: 60 Lectures

(A) Iodo / Iodimetric Titrations

- (i) Estimation of Cu(II) and K₂Cr₂O₇ using sodium thiosulphate solution (Iodimetrically).
- (ii) Estimation of (i) arsenite and (ii) antimony in tartar-emetic iodimetrically
- (iii) Estimation of available chlorine in bleaching powder iodometrically.

(B) Inorganic preparations

- (i) Cuprous Chloride, Cu₂Cl₂
- (ii) Preparation of Manganese(III) phosphate, MnPO4.H2O
- (iii) Preparation of Aluminium potassium sulphate KAl(SO₄)₂.12H₂O (Potash alum) or Chrome alum.

Reference Books:

☐ Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6thEd., Pearson, 2009.

CHEMISTRY-CC 6: ORGANIC CHEMISTRY-II

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Chemistry of Halogenated Hydrocarbons:

Alkyl halides: Methods of preparation, nucleophilic substitution reactions – S_N1, S_N2 and S_Ni mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination.

Aryl halides: Preparation, including preparation from diazonium salts. Nucleophilic

aromatic substitution; SNAr, Benzyne mechanism.

Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.

Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.

(16 Lectures)

Alcohols, Phenols, Ethers and Epoxides:

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt-Blanc Reduction; Preparation and properties of glycols: Oxidation by periodic acid and lead tetraacetate, Pinacol-Pinacolone rearrangement.

Phenols: Preparation and properties; Acidity and factors effecting it, Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism;

Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH₄.

(16 Lectures)

Carbonyl Compounds:

Structure, reactivity and preparation; Nucleophilic additions, Nucleophilic additionelimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisen-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α-substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH4, NaBH4, MPV, PDC and PGC).

Addition reactions of unsaturated carbonyl compounds: Michael addition.

Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.

(14 Lectures)

Carboxylic Acids and their Derivatives:

Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids: succinic/phthalic, lactic, malic, tartaric, citric, maleic and fumaric acids.

Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic sustitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann-bromamide degradation and Curtius rearrangement.

(10 Lectures)

Sulphur containing compounds:

Preparation and reactions of thiols, thioethers and sulphonic acids.

(4 Lectures)

Reference Books:

Morrison, R. I. & Boyd, R. N. <i>Organic Chemistry</i> , Dorling Kindersley (India) Pvt.
Ltd. (Pearson Education).
Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt.
Ltd. (Pearson Education).
Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
McMurry, J.E. Fundamentals of Organic Chemistry, 7 th Ed. Cengage Learning
India Edition 2013

CHEMISTRY LAB- CC 6 LAB: 60 Lectures

- 1. Functional group tests for alcohols, phenols, carbonyl and carboxylic acid group.
- 2. Organic preparations:
 - i. Acetylation of one of the following compounds: amines (aniline, o-, m-, p-toluidines and o-, m-, p-anisidine) and phenols (β -naphthol, vanillin, salicylic acid) by any one method:
 - a. Using conventional method.
 - b. Using green approach
 - ii. Benzolyation of one of the following amines (aniline, o-, m-, p- toluidines and o-, m-, p-anisidine) and one of the following phenols (β -naphthol, resorcinol, pcresol) by Schotten-Baumann reaction.
- iii. Oxidation of ethanol/isopropanol (Iodoform reaction).
- iv. Bromination of any one of the following:
 - a. Acetanilide by conventional methods
 - b. Acetanilide using green approach (Bromate-bromide method)
- v. Nitration of any one of the following:
 - a. Acetanilide/nitrobenzene by conventional method
 - b. Salicylic acid by green approach (using ceric ammonium nitrate).
- vi. Selective reduction of *meta* dinitrobenzene to *m*-nitroaniline.
- vii. Reduction of *p*-nitrobenzaldehyde by sodium borohydride.
- viii. Hydrolysis of amides and esters.
 - ix. Semicarbazone of any one of the following compounds: acetone, ethyl methyl ketone, cyclohexanone, benzaldehyde.
 - x. S-Benzyl isothiouronium salt of one each of water soluble and water insoluble acids(benzoic acid, oxalic acid, phenyl acetic acid and phthalic acid).
 - xi. Aldol condensation using either conventional or green method.
 - xii. Benzil-Benzilic acid rearrangement.

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid samples must be collected and may be used for recrystallization, melting point and TLC.

Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education
(2009).
Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R. Practical Organic
Chemistry, 5 th Ed. Pearson (2012).
Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:
Preparation and Quantitative Analysis, University Press (2000).
Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry:
Qualitative Analysis, University Press (2000).

CHEMISTRY-CC 7: PHYSICAL CHEMISTRY-III

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Phase Equilibria:

Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactive and reactive systems; Clausius-Clapeyron equation and its applications to solid-liquid, liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications.

Phase diagrams for systems of solid-liquid equilibria involving eutectic, congruent and incongruent melting points, solid solutions.

Three component systems, water-chloroform-acetic acid system, triangular plots.

Binary solutions: Gibbs-Duhem-Margules equation, its derivation and applications to fractional distillation of binary miscible liquids (ideal and non-ideal), azeotropes, lever rule, partial miscibility of liquids, CST, miscible pairs, steam distillation.

Nernst distribution law: its derivation and applications.

(28 Lectures)

Chemical Kinetics

Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and their differential rate equations (steady-state approximation in reaction mechanisms) (iv) chain reactions.

Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates.

(18 Lectures)

Catalysis:

Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis. (8 Lectures)

Surface chemistry:

Physical adsorption, chemisorption, adsorption isotherms, nature of adsorbed state.

(6 Lectures)

Reference Books:

Peter Atkins & Julio De Paula, <i>Physical Chemistry</i> 10 th Ed., Oxford University
Press (2014).
Castellan, G. W. <i>Physical Chemistry</i> , 4 th Ed., Narosa (2004).
McQuarrie, D. A. & Simon, J. D., Molecular Thermodynamics, Viva Books Pvt.
Ltd.: New Delhi (2004).
Engel, T. & Reid, P. <i>Physical Chemistry 3</i> rd Ed., Prentice-Hall (2012).
Assael, M. J.; Goodwin, A. R. H.; Stamatoudis, M.; Wakeham, W. A. & Will, S.

+h

Commonly Asked Questions in Thermodynamics. CRC Press: NY (2011).
Zundhal, S.S. Chemistry Concepts and Applications Cengage India (2011).
Ball, D. W. Physical Chemistry Cengage India (2012).
Mortimer, R. G. <i>Physical Chemistry</i> 3 rd Ed., Elsevier: NOIDA, UP (2009).
Levine, I. N. <i>Physical Chemistry</i> 6 th Ed., Tata McGraw-Hill (2011).
Metz, C. R. <i>Physical Chemistry</i> 2 nd Ed., Tata McGraw-Hill (2009).

CHEMISTRY PRACTICAL-CC 7 LAB: 60 Lectures

- I. Determination of critical solution temperature and composition of the phenol-water system and to study the effect of impurities on it.
- II. Phase equilibria: Construction of the phase diagram using cooling curves or ignition tube method:
 - a. simple eutectic and
 - b. congruently melting systems.
- III. Distribution of acetic/benzoic acid between water and cyclohexane.
- IV. Study the equilibrium of at least one of the following reactions by the distribution method:

(i)
$$I_2(aq) + I \longrightarrow I_3(aq)^{2+}$$

(ii) $Cu^{2+}(aq) + nNH_3 \longrightarrow Cu(NH_3)_n$

- V. Study the kinetics of the following reactions.
 - 1. Initial rate method: Iodide-persulphate reaction
 - 2. Integrated rate method:
 - a. Acid hydrolysis of methyl acetate with hydrochloric acid.
 - b. Saponification of ethyl acetate.
 - 3. Compare the strengths of HCl and H₂SO₄ by studying kinetics of hydrolysis of methyl acetate.

VI. Adsorption

I. Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal.

Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry,
R. Chand & Co.: New Delhi (2011).
Garland, C., W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical
Chemistry 8 th Ed.; McGraw-Hill: New York (2003).
Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3 rd Ed.;
W.H. Freeman & Co.: New York (2003).

SEMESTER IV

CHEMISTRY-CC 8: INORGANIC CHEMISTRY-III

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Coordination Chemistry:

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of 10 Dq (o), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq (o,t). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

(26 Lectures)

Transition Elements:

General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer & Bsworth diagrams). Difference between the first, second and third transition series.

Chemistry of Ti, V, Cr Mn, Fe and Co in various oxidation states (excluding their metallurgy).

(18 Lectures)

Lanthanoids and Actinoids:

Electronic configuration, oxidation states, colour, spectral and magnetic properties, lanthanide contraction, separation of lanthanides (ion-exchange method only).

(6 Lectures)

Bioinorganic Chemistry:

Metal ions present in biological systems, classification of elements according to their action in biological system. Geochemical effect on the distribution of metals. Sodium / K-pump, carbonic anhydrase and carboxypeptidase. Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in medicine.

Iron and its application in bio-systems, Haemoglobin; Storage and transfer of iron.

(10 Lectures)

- □ Purcell, K.F & Kotz, J.C. *Inorganic Chemistry* W.B. Saunders Co, 1977.
- ☐ Huheey, J.E., *Inorganic Chemistry*, Prentice Hall, 1993.
- ☐ Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing

Company 1994.
 □ Cotton, F.A. & Wilkinson, G, Advanced Inorganic Chemistry Wiley-VCH, 1999.
 □ Basolo, F, and Pearson, R.C. Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY, 1967.
 □ Greenwood, N.N. & Earnshaw A. Chemistry of the Elements, Butterworth-Heinemann, 1997.

CHEMISTRY-CC 8 LAB: 60 Lectures

Gravimetric Analysis:

- i. Estimation of nickel (II) using Dimethylglyoxime (DMG).
- ii. Estimation of copper as CuSCN.
- iii. Estimation of iron as Fe₂O₃ by precipitating iron as Fe_{(OH)3}.
- iv. Estimation of Al (III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate).

Inorganic Preparations:

- i. Tetraamminecopper (II) sulphate, [Cu(NH₃)₄]SO₄.H₂O
- ii. Cis and trans K[Cr(C₂O₄)₂. (H₂O)₂] Potassium dioxalatodiaquachromate (III)
- iii. Tetraamminecarbonatocobalt (III) ion
- iv. Potassium tris(oxalate)ferrate(III)

Chromatography of metal ions

Principles involved in chromatographic separations. Paper chromatographic separation of following metal ions:

- i. Ni (II) and Co (II)
- ii. Fe (III) and Al (III)

Reference Book:

☐ Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6thEd., Pearson, 2009.

CHEMISTRY-CC 9: ORGANIC CHEMISTRY-III

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Nitrogen Containing Functional Groups

Preparation and important reactions of nitro and compounds, nitriles and isonitriles.

Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, Carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid.

Diazonium Salts: Preparation and their synthetic applications.

(18 Lectures)

Polynuclear Hydrocarbons

Reactions of naphthalene phenanthrene and anthracene Structure, Preparation and structure elucidation and important derivatives of naphthalene and anthracene; Polynuclear hydrocarbons.

(8 Lectures)

Heterocyclic Compounds

Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine, Structure elucidation of indole, Fischer indole synthesis and Madelung synthesis), Structure elucidation of quinoline and isoquinoline, Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner-Miller synthesis, Bischler-Napieralski reaction, Pictet-Spengler reaction, Pomeranz-Fritsch reaction

Derivatives of furan: Furfural and furoic acid.

(22 Lectures)

Alkaloids

Natural occurrence, General structural features, Isolation and their physiological action.

Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.

(6 Lectures)

Terpenes

Occurrence, classification, isoprene rule; Elucidation of stucture and synthesis of Citral, Neral and α -terpineol.

(6 Lectures)

Ш	Morrison, R. 1. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)
	Pvt. Ltd. (Pearson Education).
	Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.
	(Pearson Education).
	Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of
	Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
	Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John
	Welly & Sons (1976).
	Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
	McMurry, J.E. Fundamentals of Organic Chemistry, 7 th Ed. Cengage Learning
	India Edition, 2013.
	Kalsi, P. S. Textbook of Organic Chemistry 1 st Ed., New Age International (P)
	Ltd. Pub.
	Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford
	University Press.
	Singh, J.; Ali, S.M. & Singh, J. Natural Product Chemistry, Prajati Parakashan
	(2010).

CHEMISTRY PRACTICAL-CC 9 LAB

60 Lectures

- 1. Detection of extra elements.
- 2. Functional group test for nitro, amine and amide groups.
- 3. Qualitative analysis of unknown organic compounds containing simple functional groups (alcohols, carboxylic acids, phenols and carbonyl compounds)

Reference Books

Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education
(2009).
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic
Chemistry, 5 th Ed., Pearson (2012).
Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:
Preparation and Quantitative Analysis, University Press (2000).
Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic
Chemistry: Qualitative Analysis, University Press (2000).

CHEMISTRY-CC 10: PHYSICAL CHEMISTRY-IV

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Conductance

Arrhenius theory of electrolytic dissociation. Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Molar conductivity at infinite dilution. Kohlrausch law of independent migration of ions. Debye-Hückel-Onsager equation, Wien effect, Debye-Falkenhagen effect, Walden's rules.

Ionic velocities, mobilities and their determinations, transference numbers and their relation to ionic mobilities, determination of transference numbers using Hittorf and Moving Boundary methods. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) conductometric titrations, and (v) hydrolysis constants of salts.

(20 Lectures)

Electrochemistry

Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry.

Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining

(i) free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass and SbO/Sb₂O₃ electrodes. Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers. Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation).

(28 Lectures)

Electrical & Magnetic Properties of Atoms and Molecules

Basic ideas of electrostatics, Electrostatics of dielectric media, Clausius-Mosotti equation, Lorenz-Laurentz equation, Dipole moment and molecular polarizabilities and their measurements. Diamagnetism, paramagnetism, magnetic susceptibility and its measurement, molecular interpretation.

(12 Lectures)

Reference Books:

 •
Atkins, P.W & Paula, J.D. Physical Chemistry, 10 th Ed., Oxford University
Press (2014)
Castellan, G. W. <i>Physical Chemistry</i> 4 th Ed., Narosa (2004). Mortimer, R. G. <i>Physical Chemistry</i> 3 rd Ed., Elsevier: NOIDA, UP (2009). Barrow, G. M., <i>Physical Chemistry</i> 5 th Ed., Tata McGraw Hill: New Delhi (2006)
Mortimer, R. G. <i>Physical Chemistry 3</i> , Elsevier: NOIDA, UP (2009).
Barrow, G. M., <i>Physical Chemistry</i> 5 th Ed., Ţata McGraw Hill: New Delhi (2006)
Engel, T. & Reid, P. <i>Physical Chemistry 3rdEd.</i> , Prentice-Hall (2012).
Rogers, D. W. Concise Physical Chemistry Wiley (2010).
Silbey, R. J.; Alberty, R. A. &Bawendi, M. G. Physical Chemistry 4 th Ed.,
John Wiley & Sons, Inc. (2005).

CHEMISTRY PRACTICAL-CC 10 LAB: 60 Lectures

Conductometry

- I. Determination of cell constant
- II. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- III. Perform the following conductometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Mixture of strong acid and weak acid vs. strong base
 - iv. Strong acid vs. weak base

Potentiometry

- I Perform the following potentiometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Dibasic acid vs. strong base
 - iv. Potassium dichromate vs. Mohr's salt

Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry,
R. Chand & Co.: New Delhi (2011).
Garland, C., W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical
Chemistry8 th Ed.; McGraw-Hill: New York (2003).
Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3 rd Ed.; W.H.
Freeman & Co.: New York (2003).

SEMESTER V

CHEMISTRY-CC 11: ORGANIC CHEMISTRY-IV

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Nucleic Acids

Components of nucleic acids, Nucleosides and nucleotides;

Structure, synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine; Structure of polynucleotides.

(9 Lectures)

Amino Acids, Peptides and Proteins

Amino acids, Peptides and their classification.

 α -Amino Acids - Synthesis, ionic properties and reactions. Zwitterions, p K_a values, isoelectric point and electrophoresis.

Study of peptides: determination of their primary structures-end group analysis, methods of peptide synthesis. Synthesis of peptides using N-protecting, C-protecting and C-activating groups -Solid-phase synthesis. (16 Lectures)

Enzymes

Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes.

Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition).

(8 Lectures)

Lipids

Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenation of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity.

(8 Lectures)

Concept of Energy in Biosystems

Cells obtain energy by the oxidation of foodstuff (organic

molecules). Introduction to metabolism (catabolism, anabolism).

ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. Agents for transfer of electrons in biological redox systems: NAD⁺, FAD.

Conversion of food to energy: Outline of catabolic pathways of carbohydrate- glycolysis, fermentation, Krebs cycle.

Overview of catabolic pathways of fat and protein.

Interrelationship in the metabolic pathways of protein, fat and carbohydrate.

Caloric value of food, standard caloric content of food types.

(7 Lectures)

Pharmaceutical Compounds: Structure and Importance

Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine).

(12 Lectures)

Reference Books:

- □ Berg, J.M., Tymoczko, J.L. & Stryer, L. (2006) *Biochemistry*. 6th Ed. W.H. Freeman and Co.
- □ Nelson, D.L., Cox, M.M. & Lehninger, A.L. (2009) *Principles of Biochemistry. IV Edition.* W.H. Freeman and Co.
- □ Murray, R.K., Granner, D.K., Mayes, P.A. & Rodwell, V.W. (2009) *Harper's Illustrated Biochemistry*. XXVIII edition. Lange Medical Books/ McGraw-Hill.

CHEMISTRY PRACTICAL-CC 11 LAB

60 Lectures

- 1. Estimation of glycine by Sorenson's formalin method.
- 2. Study of the titration curve of glycine.
- 3. Estimation of proteins by Lowry's method.
- 4. Study of the action of salivary amylase on starch at optimum conditions.
- 5. Effect of temperature on the action of salivary amylase.
- 6. Saponification value of an oil or a fat.
- 7. Determination of Iodine number of an oil/ fat.
- 8. Isolation and characterization of DNA from onion/cauliflower/peas.

Reference Books:

- ☐ Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.
- ☐ Arthur, I. V. *Quantitative Organic Analysis*, Pearson.

CHEMISTRY-CC 12: PHYSICAL CHEMISTRY-V

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Quantum Chemistry

Postulates of quantum mechanics, quantum mechanical operators, Schrödinger equation and its application to free particle and "particle-in-a-box" (rigorous treatment), quantization of energy levels, zero-point energy and Heisenberg Uncertainty principle; wave functions, probability distribution functions, nodal properties, Extension to two and three dimensional boxes, separation of variables, degeneracy.

Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wave functions. Vibrational energy of diatomic molecules and zero-point energy.

Angular momentum: Commutation rules, quantization of square of total angular momentum

and z-component.

Rigid rotator model of rotation of diatomic molecule. Schrödinger equation, transformation to spherical polar coordinates. Separation of variables. Spherical harmonics. Discussion of solution.

Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus.

Setting up of Schrödinger equation for many-electron atoms (He, Li). Need for approximation methods. Statement of variation theorem and application to simple systems (particle-in-a-box, harmonic oscillator, hydrogen atom).

Chemical bonding: Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of ${\rm H_2}^+$. Bonding and antibonding orbitals. Qualitative extension to H₂. Comparison of LCAO-MO and VB treatments of H₂ (only wave functions, detailed solution not required) and their limitations. Refinements of the two approaches (Configuration Interaction for MO, ionic terms in VB).Qualitative description of LCAO-MO treatment of homonuclear and heteronuclear diatomic molecules (HF, LiH). Localised and non-localised molecular orbitals treatment of triatomic (BeH₂, H₂O) molecules. Qualitative MO theory and its application to AH₂ type molecules.

(24 Lectures)

Molecular Spectroscopy:

Interaction of electromagnetic radiation with molecules and various types of spectra; Born-Oppenheimer approximation.

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.

Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.

Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion.

Electronic spectroscopy: Franck-Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence, dissociation and pre-dissociation, calculation of electronic transitions of polyenes using free electron model.

Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of NMR spectroscopy, Larmor precession, chemical shift and low resolution spectra, different scales, spin-spin coupling and high resolution spectra, interpretation of PMR spectra of organic molecules.

Electron Spin Resonance (ESR) spectroscopy: Its principle, hyperfine structure, ESR of simple radicals.

(24 Lectures)

Photochemistry

Characteristics of electromagnetic radiation, Lambert-Beer's law and its limitations, physical significance of absorption coefficients. Laws, of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitised reactions, quenching. Role of photochemical reactions in biochemical processes, photostationary states, chemiluminescence.

(12 Lectures)

Reference Books:

Banwell, C. N. & McCash, E. M. Fundamentals of Molecular Spectroscopy 4 th Ed. Tata
McGraw-Hill: New Delhi (2006).
Chandra, A. K. Introductory Quantum Chemistry Tata McGraw-Hill (2001).
House, J. E. Fundamentals of Quantum Chemistry 2 nd Ed. Elsevier: USA (2004).
Kakkar, R. Atomic & Molecular Spectroscopy: Concepts & Applications
Cambridge University Press (2015).
Lowe, J. P. & Peterson, K. Quantum Chemistry, Academic Press (2005).

CHEMISTRY PRACTICAL-CC 12

LAB 60 Lectures

UV/Visible spectroscopy

- I. Study the 200-500 nm absorbance spectra of KMnO₄ and K₂Cr₂O₇ (in 0.1 M H₂SO₄) and determine the λ_{max} values. Calculate the energies of the two transitions in different units (J molecule⁻¹, kJ mol⁻¹, cm⁻¹, eV).
- II. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of K₂Cr₂O₇.
- III. Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UV spectra of organic compounds.

Colorimetry

- I. Verify Lambert-Beer's law and determine the concentration of CuSO₄/KMnO₄/K₂Cr₂O₇ in a solution of unknown concentration
- II. Determine the concentrations of KMnO4 and K2Cr2O7 in a mixture.
- III. Study the kinetics of iodination of propanone in acidic medium.
- IV. Determine the amount of iron present in a sample using 1,10-phenathroline.
- V. Determine the dissociation constant of an indicator (phenolphthalein).
- VI. Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide.
- VII. Analysis of the given vibration-rotation spectrum of HCl(g).

Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry
R. Chand & Co.: New Delhi (2011).
Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physica
Chemistry 8 th Ed.; McGraw-Hill: New York (2003).
Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3 rd Ed.
WH Freeman & Co · New York (2003)

SEMESTER VI

CHEMISTRY-CC 13: INORGANIC CHEMISTRY-IV

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Theoretical Principles in Qualitative Analysis (H₂S Scheme)

Basic principles involved in analysis of cations and anions and solubility products, common ion effect. Principles involved in separation of cations into groups and choice of group reagents. Interfering anions (fluoride, borate, oxalate and phosphate) and need to remove them after Group II.

(10 Lectures)

Organometallic Compounds

Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands.

Metal carbonyls: 18 electron rule, electron count of mononuclear, polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series. Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT. π -acceptor behaviour of CO (MO diagram of CO to be discussed), synergic effect and use of IR data to explain extent of back bonding.

Zeise's salt: Preparation and structure, evidences of synergic effect and comparison of synergic effect with that in carbonyls.

Metal Alkyls: Important structural features of methyl lithium (tetramer) and trialkyl aluminium (dimer), concept of multicentre bonding in these compounds. Role of triethylaluminium in polymerisation of ethene (Ziegler – Natta Catalyst). Species present in ether solution of Grignard reagent and their structures, Schlenk equilibrium.

Ferrocene: Preparation and reactions (acetylation, alkylation, metallation, Mannich Condensation). Structure and aromaticity. Comparison of aromaticity and reactivity with that of benzene.

(22 Lectures)

Reaction Kinetics and Mechanism

Introduction to inorganic reaction mechanisms. Substitution reactions in square planar complexes, Trans- effect, theories of trans effect, Mechanism of nucleophilic substitution in square planar complexes, Thermodynamic and Kinetic stability, Kinetics of octahedral substitution, Ligand field effects and reaction rates, Mechanism of substitution in octahedral complexes.

(18 Lectures)

Catalysis by Organometallic Compounds

Study of the following industrial processes and their mechanism:

- 1. Alkene hydrogenation (Wilkinsons Catalyst)
- 2. Hydroformylation (Co salts)
- 3. Wacker Process
- 4. Synthetic gasoline (Fischer Tropsch reaction)
- 5. Synthesis gas by metal carbonyl complexes.

(10 Lectures)

Reference Books:

□ Svehla, G. Vogel's Qualitative Inorganic Analysis, 7th Edition, Prentice Hall, □ Cotton, F.A.G.; Wilkinson & Gaus, P.L. Basic Inorganic Chemistry 3rdEd.: Wiley India, ☐ Huheey, J. E.; Keiter, E.A. & Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson,2006.
 Sharpe, A.G. Inorganic Chemistry, 4th Indian Reprint (Pearson Education) 2005
 Douglas, B. E.; McDaniel, D.H. & Alexander, J.J. Concepts and Models in Inorganic Chemistry 3rd Ed., John Wiley and Sons, NY, 1994. ☐ Greenwood, N.N. &Earnshaw, A. Chemistry of the Elements, Elsevier 2ndEd, 1997 (Ziegler Natta Catalyst and Equilibria in Grignard Solution). Lee, J.D. *Concise Inorganic Chemistry* $5^{th}Ed$., John Wiley and sons 2008. □ Powell, P. Principles of Organometallic Chemistry, Chapman and Hall, 1988. ☐ Shriver, D.D. & P. Atkins, *Inorganic Chemistry* 2nd Ed., Oxford University Press, 1994. ☐ Basolo, F. & Pearson, R. Mechanisms of Inorganic Reactions: Study of Metal Complexes in Solution 2nd Ed., John Wiley & Sons Inc; NY. □ Purcell, K.F. & Kotz, J.C., *Inorganic Chemistry*, W.B. Saunders Co. 1977 ☐ Miessler, G. L. & Tarr, D.A. *Inorganic Chemistry* 4th Ed., Pearson, 2010. □ Collman, J. P. et al. Principles and Applications of Organotransition Metal Chemistry. Mill Valley, CA: University Science Books, 1987. ☐ Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. j New York, NY: John Wiley, 2000. □ Spessard, G. O. & Miessler, G.L. Organometallic Chemistry. Upper Saddle River, NJ: Prentice-Hall, 1996.

CHEMISTRY PRACTICAL-CC 13 LAB

60 Lectures

Qualitative semimicro analysis of mixtures containing 3 anions and 3 cations. Emphasis should be given to the understanding of the chemistry of different reactions. The following radicals are suggested:

$$CO_3^2$$
, NO_2 , S^2 , SO_3^2 , $S_2O_3^2$, CH_3 COO_3 , F , CI , Br , I , NO_3 , BO_3^3 , $C_2O_4^2$, PO_4^3 , NH_4^+ , K^+ , Pb_3^2 , Cu_3^2 , Cu

Mixtures should preferably contain one interfering anion, **or** insoluble component (BaSO₄, SrSO₄, PbSO₄, CaF₂ or Al₂O₃) or combination of anions e.g. CO_3^2 and SO_3^2 , NO_2 and NO_3 , Cl and Br, Cl and I, Br and I, NO_3 and Br, NO_3 and I.

Spot tests should be done whenever possible.

- i. Measurement of 10 Dq by spectrophotometric method
- ii. Verification of spectrochemical series.
- iii. Controlled synthesis of two copper oxalate hydrate complexes: kinetic vs thermodynamic factors.
- iv. Preparation of acetylacetanato complexes of $\text{Cu}^{2+}\!/\text{Fe}^{3+}$. Find the λ_{max} of the complex.
- v. Synthesis of ammine complexes of Ni(II) and its ligand exchange reactions (e.g.

bidentate ligands like acetylacetone, DMG, glycine) by substitution method.

Reference Books

- □ Vogel's *Qualitative Inorganic Analysis*, Revised by G. Svehla. Pearson Education, 2002.
- ☐ Marr & Rockett *Practical Inorganic Chemistry*. John Wiley & Sons 1972.

CHEMISTRY-CC 14: ORGANIC CHEMISTRY-V

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Organic Spectroscopy

General principles Introduction to absorption and emission spectroscopy.

UV Spectroscopy: Types of electronic transitions, λ_{max} , Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of λ_{max} for the following systems: α, β unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers.

IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in functional group analysis.

NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it; Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple compounds.

Applications of IR, UV and NMR for identification of simple organic molecules.

(24 Lectures)

Carbohydrates

Occurrence, classification and their biological importance.

Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani-Fischer synthesis and Ruff degradation;

Disaccharides – Structure elucidation of maltose, lactose and sucrose.

Polysaccharides – Elementary treatment of starch, cellulose and glycogen.

(16 Lectures)

Dves

Classification, Colour and constitution; Mordant and Vat Dyes; Chemistry of dyeing;

Synthesis and applications of: Azo dyes – Methyl Orange and Congo Red (mechanism of Diazo Coupling); Triphenyl Methane Dyes -Malachite Green, Rosaniline and Crystal Violet; Phthalein Dyes – Phenolphthalein and Fluorescein; Natural dyes –structure elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples.

(8 Lectures)

Polymers

Introduction and classification including di-block, tri-block and amphiphilic polymers; Number average molecular weight, Weight average molecular weight, Degree of polymerization, Polydispersity Index.

Polymerisation reactions -Addition and condensation -Mechanism of cationic, anionic and free radical addition polymerization; Metallocene-based Ziegler-Natta polymerisation of alkenes; Preparation and applications of plastics – thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene).

Fabrics – natural and synthetic (acrylic, polyamido, polyester); Rubbers – natural and synthetic: Buna-S, Chloroprene and Neoprene; Vulcanization; Polymer additives; Introduction to liquid crystal polymers; Biodegradable and conducting polymers with examples.

(12 Lectures)

Kalsi, P. S. <i>Textbook of Organic Chemistry 1St Ed.</i> , New Age International (P)
Ltd. Pub.
Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)
Pvt. Ltd. (Pearson Education).
Billmeyer, F. W. Textbook of Polymer Science, John Wiley & Sons, Inc.
Gowariker, V. R.; Viswanathan, N. V. & Sreedhar, J. Polymer Science, New
Age International (P) Ltd. Pub.
Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of
Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
McMurry, J.E. Fundamentals of Organic Chemistry, 7 th Ed. Cengage Learning
India Edition, 2013.
Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford
University Press.
Singh, J.; Ali, S.M. & Singh, J. Natural Product Chemistry, Prajati Prakashan
(2010).
Kemp, W. Organic Spectroscopy, Palgrave.
Pavia, D. L. et al. Introduction to Spectroscopy 5 th Ed. Cengage Learning India
Ed. (2015).

CHEMISTRY PRACTICAL-CC 14 LAB

60 Lectures

- 1. Extraction of caffeine from tea leaves.
- 2. Preparation of sodium polyacrylate.
- 3. Preparation of urea formaldehyde.
- 4. Analysis of Carbohydrate: aldoses and ketoses, reducing and non-reducing sugars.
- 5. Qualitative analysis of unknown organic compounds containing monofunctional groups (carbohydrates, aryl halides, aromatic hydrocarbons, nitro compounds, amines and amides) and simple bifunctional groups, for e.g. salicylic acid, cinnamic acid, nitrophenols, etc.
- 6. Identification of simple organic compounds by IR spectroscopy and NMR spectroscopy (Spectra to be provided).
- 7. Preparation of methyl orange.

CI	ici chec books.	
	Vogel, A.I. Quantitative Organic Analysis, Part 3, Pearson (2012).	
	Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education	
	(2009).	
	Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic	
	Chemistry, 5 th Ed., Pearson (2012).	
	Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:	
	Preparation and Quantitative Analysis, University Press (2000).	
	Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry:	
	Qualitative Analysis, University Press (2000).	

Skill Enhancement Course (Credit: 02 each)

(SEC-1 & SEC-2 for the students of Chemistry Honours)

SEC-1: BASIC ANALYTICAL CHEMISTRY (Credits: 02) 30 Lectures

Introduction: Introduction to Analytical Chemistry and its interdisciplinary nature. Conceptof sampling. Importance of accuracy, precision and sources of error in analytical measurements. Presentation of experimental data and results, from the point of view of significant figures.

Analysis of soil: Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators.

- a. Determination of pH of soil samples.
- b. Estimation of Calcium and Magnesium ions as Calcium carbonate by complexometric titration.

Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods.

- a. Determination of pH, acidity and alkalinity of a water sample.
- b. Determination of dissolved oxygen (DO) of a water sample.

Analysis of food products: Nutritional value of foods, idea about food processing and food preservations and adulteration.

- a. Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc.
- b. Analysis of preservatives and colouring matter.

Chromatography: Definition, general introduction on principles of chromatography, paper chromatography, TLC etc.

- a. Paper chromatographic separation of mixture of metal ion (Fe^{3+} and Al^{3+}).
- To compare paint samples by TLC method. Ionexchange: Column, ion-exchange chromatography etc.

Determination of ion exchange capacity of anion / cation exchange resin (using batch procedure if use of column is not feasible).

Analysis of cosmetics: Major and minor constituents and their function

- a. Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate.
- b. Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, Zinc oxide and Calcium carbonate by complexometric titration.

Suggested Applications (Any one):

- a. To study the uses of phenolphthalein in trap cases.
- b. To analyse arson accelerants.
- c. To carry out analysis of gasoline.

Suggested Instrumental demonstrations:

- a. Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.
- b. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.
- c. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drinks.

- 2. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7thEd. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988.
- 3. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007.
- 4. Skoog, D.A.; West, D.M. & Holler, F.J. Analytical Chemistry: An Introduction 6th Ed., Saunders College Publishing, Fort Worth, Philadelphia (1994).
 5. Harris, D. C. Quantitative Chemical Analysis, 9th ed. Macmillan Education,
- 6. Dean, J. A. Analytical Chemistry Handbook, McGraw Hill, 2004.
- 7. Day, R. A. & Underwood, A. L. Quantitative Analysis, Prentice Hall of India,
- 8. Freifelder, D.M. Physical Biochemistry 2ndEd., W.H. Freeman & Co., N.Y. USA (1982).
- 9. Cooper, T.G. The Tools of Biochemistry, John Wiley & Sons, N.Y. USA. 16
- (1977).
 10. Vogel, A. I. *Vogel's Qualitative Inorganic Analysis* 7th Ed., Prentice Hall, 1996.
- 11. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6thEd., Pearson,
- 12. Robinson, J.W. *Undergraduate Instrumental Analysis* 5thEd., Marcel Dekker, Inc., New York (1995).
- 13. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

SEC-2 FUEL CHEMISTRY (Credits: 02)

30 Lectures

Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value.

Coal: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas-composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining.

Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications.

Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels. Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants.

Properties of lubricants (viscosity index, cloud point, pour point) and their determination.

Stocchi, E. Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK (1990).
Jain, P.C. & Jain, M. Engineering Chemistry Dhanpat Rai& Sons, Delhi.
Sharma, B.K. & Gaur, H. <i>Industrial Chemistry</i> , Goel Publishing House, Meerur (1996).

CHEMISTRY-DSE 1-4 (For the students of Chemistry Honours)

CHEMISTRY-DSE-1: ANALYTICAL METHODS IN CHEMISTRY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Qualitative and quantitative aspects of analysis:

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.

(5 Lectures)

Optical methods of analysis:

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law.

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument;

Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of composition of metal complexes using Job's method of continuous variation and mole ratio method.

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques.

Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.

(25 Lectures)

Thermal methods of analysis:

Theory of thermogravimetry (TG), basic principle of instrumentation.

Techniques for quantitative estimation of Ca and Mg from their mixture.

(5 Lectures)

Electroanalytical methods:

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points.

Bodoland University

B.Sc. Chemistry Syllabus

Techniques used for the determination of pKa values.

(10 Lectures)

Separation techniques:

Solvent extraction: Classification, principle and efficiency of the technique.

Mechanism of extraction: extraction by solvation and chelation.

Technique of extraction: batch, continuous and counter current extractions.

Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and non-aqueous media.

Chromatography: Classification, principle and efficiency of the technique.

Mechanism of separation: adsorption, partition & ion exchange.

Development of chromatograms: frontal, elution and displacement methods.

Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC.

Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR, Chiral solvents and chiral shift reagents. Chiralchromatographic techniques using chiral columns (GC and HPLC).

Role of computers in instrumental methods of analysis.

(15 Lectures)

Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6 th Ed., Pearson, 2009.
Willard, H.H. et al.: Instrumental Methods of Analysis, 7 th Ed. Wardsworth
Publishing Company, Belmont, California, USA, 1988.
Publishing Company, Belmont, California, USA, 1988. Christian, G.D. <i>Analytical Chemistry</i> , 6 th Ed. John Wiley & Sons, New York, 2004.
Harris, D.C.: <i>Exploring Chemical Analysis</i> , 9 th Ed. New York, W.H. Freeman, 2016.
Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International
Publisher, 2009.
Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis,
Cengage Learning India Ed.
Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles
Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979.
Ditts, R.V. Analytical Chemistry; Methods of separation, van Nostrand, 1974.

PRACTICALS- DSE-1 LAB: ANALYTICAL METHODS IN CHEMISTRY (60 Lectures)

I. Separation Techniques

- 1. Chromatography:
- (a) Separation of mixtures
- (i) Paper chromatographic separation of Fe³⁺, Al³⁺, and Cr³⁺.
- (ii) Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the R_f values.
- (b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their Rf values.
- (c) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC.

II. Solvent Extractions:

- (i) To separate a mixture of Ni²⁺& Fe²⁺ by complexation with DMG and extracting the Ni²⁺-DMG complex in chloroform, and determine its concentration by spectrophotometry.
- (ii) Solvent extraction of zisconium with amberliti LA-1, separation from a mixture of irons and gallium.
- 3. Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.
- 4. Determination of Na, Ca, Li in cola drinks and fruit juices using fame photometric techniques.
- 5. Analysis of soil:
- (i) Determination of pH of soil.
- (ii) Total soluble salt
- (iii) Estimation of calcium, magnesium, phosphate,

nitrate 6. Ion exchange:

- (i) Determination of exchange capacity of cation exchange resins and anion exchange resins.
- (ii) Separation of metal ions from their binary mixture.

(iii) Separation of amino acids from organic acids by ion exchange chromatography.

III Spectrophotometry

- 1. Determination of pKa values of indicator using spectrophotometry.
 - 2 Structural characterization of compounds by infrared spectroscopy.
 - 3 Determination of dissolved oxygen in water.
 - 4 Determination of chemical oxygen demand (COD).
 - 5 Determination of Biological oxygen demand (BOD).
 - 6 Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by Job's method.

Reference Books:

	Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6 th Ed., Pearson, 2009.
	Willard, H.H. <i>et al.</i> : <i>Instrumental Methods of Analysis</i> , 7 th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
	Christian, G.D. Analytical Chemistry, 6 th Ed. John Wiley & Sons, New York, 2004.
	Harris, D.C. <i>Exploring Chemical Analysis</i> , 9 th Ed. New York, W.H. Freeman, 2016.
	Khopkar, S.M. <i>Basic Concepts of Analytical Chemistry</i> . New Age International Publisher, 2009.
	Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis,
_	Cengage Learning India Edition.
	Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic &
	Allied Methods, Elles Harwood Ltd. London.
	Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New
	York, 1974.

CHEMISTRY-DSE-2: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Introduction to spectroscopic methods of analysis:

Recap of the spectroscopic methods covered in detail in the core chemistry syllabus: Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation.

(4 Lectures)

Molecular spectroscopy:

Infrared spectroscopy:

Interactions with molecules: absorption and scattering. Means of excitation (light sources), separation of spectrum (wavelength dispersion, time resolution), detection of the signal (heat,

differential detection), interpretation of spectrum (qualitative, mixtures, resolution), advantages of Fourier Transform (FTIR). Samples and results expected. Applications: Issues of quality assurance and quality control, Special problems for portable instrumentation and rapid detection.

UV-Visible/ Near IR – emission, absorption, fluorescence and photoaccoustic. Excitation sources (lasers, time resolution), wavelength dispersion (gratings, prisms, interference filters, laser, placement of sample relative to dispersion, resolution), Detection of signal (photocells, photomultipliers, diode arrays, sensitivity and S/N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoaccoustic, fluorescent tags). (16 Lectures)

Separation techniques

Chromatography: Gas chromatography, liquid chromatography, supercritical fluids, Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further analysis (use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis.

Immunoassays and DNA techniques.

Mass spectroscopy: Making the gaseous molecule into an ion (electron impact, chemical ionization), Making liquids and solids into ions (electrospray, electrical discharge, laser desorption, fast atom bombardment), Separation of ions on basis of mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Resolution, time and multiple separations, Detection and interpretation (how this is linked to excitation).

(16 Lectures)

Elemental analysis:

Mass spectrometry (electrical discharges).

Atomic spectroscopy: Atomic absorption, Atomic emission, and Atomic fluorescence.

Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences).

(8 Lectures)

NMR spectroscopy: **P**rinciple, Instrumentation, Factors affecting chemical shift, Spincoupling, Applications. (4 Lectures)

Electroanalytical Methods: Potentiometry & Voltammetry

(4 Lectures)

Radiochemical Methods

(4 Lectures)

X-ray analysis and electron spectroscopy (surface analysis)

(4 Lectures)

- □ D.A. Skoog, F.J. Holler & S. Crouch (ISBN 0-495-01201-7) *Principles of Instrumental Analysis*, Cengage Learning India Edition, 2007.
- □ Willard, Merritt, Dean, Settle, *Instrumental Methods of Analysis*, 7th ed, IBH Book House, New Delhi.

	fh
	Atkins, P.W & Paula, J.D. <i>Physical Chemistry</i> , 10 th Ed., Oxford University Press (2014).
	Kakkar, R. Atomic and Molecular Spectroscopy: Concepts and Applications.
	Cambridge University Press, 2015.
	Castellan, G. W. <i>Physical Chemistry</i> 4 th Ed., Narosa (2004).
	Banwell, C. N. & McCash, E. M. Fundamentals of Molecular Spectroscopy 4 th Ed. Tata
	McGraw-Hill: New Delhi (2006).
	Smith, B.C. Infrared Spectral Interpretations: A Systematic Approach. CRC Press, 1998.
П	Moore W.I. Physical Chemistry Orient Blackswan, 1999

PRACTICALS-DSE-2 LAB: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS (60 Lectures)

- 1. Safety Practices in the Chemistry Laboratory
- 2. Determination of the isoelectric pH of a protein.
- 3. Titration curve of an amino acid.
- 4. Determination of the void volume of a gel filtration column.
- 5. Determination of a Mixture of Cobalt and Nickel (UV/Vis spec.)
- 6. Study of Electronic Transitions in Organic Molecules (i.e., acetone in water)
- 7. IR Absorption Spectra (Study of Aldehydes and Ketones)
- 8. Determination of Calcium, Iron, and Copper in Food by Atomic Absorption
- 9. Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and carbon tetrachloride)
- 10. Separation of Carbohydrates by HPLC
- 11. Determination of Caffeine in Beverages by HPLC
- 12. Potentiometric Titration of a Chloride-Iodide Mixture
- 13. Cyclic Voltammetry of the Ferrocyanide/Ferricyanide Couple
- 14. Nuclear Magnetic Resonance
- 15. Use of fluorescence to do "presumptive tests" to identify blood or other body fluids.
- 16. Use of "presumptive tests" for anthrax or cocaine
- 17. Collection, preservation, and control of blood evidence being used for DNA testing
- 18. Use of capillary electrophoresis with laser fluorescence detection for nuclear DNA (Y chromosome only or multiple chromosome)
- 19. Use of sequencing for the analysis of mitochondrial DNA
- 20. Laboratory analysis to confirm anthrax or cocaine
- 21. Detection in the field and confirmation in the laboratory of flammable accelerants or explosives
- 22. Detection of illegal drugs or steroids in athletes
- 23. Detection of pollutants or illegal dumping
- 24. Fibre analysis

At least 10 experiments to be performed.

Reference Books:

	Skoog, D.A.	Holler F.J.	& Nieman,	T.A.	Principles	of Instr	rumental	Analysis,
	Cengage Lear	ning India Ed						
П	Willard H H	Merritt I.I.	Dean I &	Setto	e FA Inst	rumenta	Methods	s of Analy

Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. *Instrumental Methods of Analysis*, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988.

CHEMISTRY-DSE-3: APPLICATIONS OF COMPUTERS IN CHEMISTRY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Basics:

Constants, variables, bits, bytes, binary and ASCII formats, arithmetic expressions, hierarchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics. Compiled versus interpreted languages. Debugging. Simple programs using these concepts. Matrix addition and multiplication. Statistical analysis.

Numerical methods:

Roots of equations: Numerical methods for roots of equations: Quadratic formula, iterative method, Newton-Raphson method, Binary bisection and Regula-Falsi.

Differential calculus: Numerical differentiation.

Integral calculus: Numerical integration (Trapezoidal and Simpson's rule), probability distributions and mean values.

Simultaneous equations: Matrix manipulation: addition, multiplication. Gauss-Siedal method.

Interpolation, extrapolation and curve fitting: Handling of experimental data.

Conceptual background of molecular modelling: Potential energy surfaces. Elementary ideas of molecular mechanics and practical MO methods.

Harris, D. C. <i>Quantitative Chemical Analysis</i> . 6 th Ed., Freeman (2007) Chapters 3-5.
Levie, R. de, How to use Excel in analytical chemistry and in general scientific data
analysis, Cambridge Univ. Press (2001) 487 pages.
Noggle, J. H. <i>Physical chemistry on a Microcomputer</i> . Little Brown & Co. (1985).
Venit, S.M. Programming in BASIC: Problem solving with structure and style. Jaico
Publishing House: Delhi (1996).

PRACTICAL-DSE-3 LAB: APPLICATIONS OF COMPUTERS IN CHEMISTRY

60 Lectures

Computer programs based on numerical methods for

- 1. Roots of equations: (e.g. volume of van der Waals gas and comparison with ideal gas, pH of a weak acid).
- 2. Numerical differentiation (e.g., change in pressure for small change in volume of a van der Waals gas, potentiometric titrations).
- 3. Numerical integration (e.g. entropy/ enthalpy change from heat capacity data), probability distributions (gas kinetic theory) and mean values.
- 4. Matrix operations. Application of Gauss-Siedel method in colourimetry.
- 5. Simple exercises using molecular visualization software.

Reference Books:

McQuarrie, D. A. Mathematics for Physical Chemistry University Science
Books (2008).
Mortimer, R. Mathematics for Physical Chemistry. 3 rd Ed. Elsevier (2005).
Steiner, E. <i>The Chemical Maths Book</i> Oxford University Press (1996).
Yates, P. Chemical Calculations. 2 nd Ed. CRC Press (2007).
Harris, D. C. <i>Quantitative Chemical Analysis</i> . 6 th Ed., Freeman (2007) Chapters 3-5.
Levie, R. de, <i>How to use Excel in analytical chemistry and in general scientific data analysis</i> , Cambridge Univ. Press (2001) 487 pages.
Noggle, J. H. Physical Chemistry on a Microcomputer. Little Brown & Co. (1985).
Venit, S.M. Programming in BASIC: Problem solving with structure and style. Jaico
Publishing House: Delhi (1996).

CHEMISTRY-DSE-4: DISSERTATION (Credits: 06)

Each student will submit a dissertation on an assigned topic under the guidance of a faculty member.

Generic Elective Papers for other Departments/Disciplines (GE-1 to GE-4)

(Credit: 06 each)

GE-1: Chemistry-1
(ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS)
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Section A: Inorganic Chemistry-1 (30 Periods)

Atomic Structure: Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure.

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2 , Schrödinger equation for hydrogen atom. Radial and angular parts of the hydrogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m_l and m_s . Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (m_s) .

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

(14 Lectures)

Chemical Bonding and Molecular Structure

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.

MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of

orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO $^+$. Comparison of VB and MO approaches.

(16 Lectures)

Section B: Organic Chemistry-1 (30 Periods)

Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis.

Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule.

(8 Lectures)

Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; *cis-trans* nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E/Z Nomenclature (for upto two C=C systems).

(10 Lectures)

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons). *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO4) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC2and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. *Reactions:* formation of metal acetylides, addition of bromine and alkaline KMnO4,ozonolysis and oxidation with hot alk. KMnO4.

(12 Lectures)

Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.	
Cotton, F.A., Wilkinson, G. & Gaus, P.L. Basic Inorganic Chemistry, 3 rd ed., Wiley.	
Douglas, B.E., McDaniel, D.H. & Alexander, J.J. Concepts and Models	in
Inorganic Chemistry, John Wiley & Sons.	

Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry:
Principles of Structure and Reactivity, Pearson Education India, 2006.
Graham Solomon, T.W., Fryhle, C.B. & Dnyder, S.A. Organic Chemistry, John
Wiley & Sons (2014).
McMurry, J.E. Fundamentals of Organic Chemistry, 7 th Ed. Cengage Learning
India Edition, 2013.
Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New
Delhi (1988).
Eliel, E.L. Stereochemistry of Carbon Compounds, Tata McGraw Hill education,
2000.
Finar, I.L. Organic Chemistry (Vol. I & II), E.L.B.S.
Morrison, R.T. & Boyd, R.N. Organic Chemistry, Pearson, 2010.
Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.

GE-1 LAB: Chemistry-1 LAB

60 Lectures

Section A: Inorganic Chemistry - Volumetric Analysis

- 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 2. Estimation of oxalic acid by titrating it with KMnO₄.
- 3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.
- 4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.
- 5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry

- 1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)
- 2. Separation of mixtures by Chromatography: Measure the R_f value in each case (combination of two compounds to be given)
- (a) Identify and separate the components of a given mixture of two amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography
- (b) Identify and separate the sugars present in the given mixture by paper chromatography.

CI	ance books.
	Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
	Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
	Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G.,
	Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
	Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

GE-2: Chemistry-2 (CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY-I)

(Credits: Theory-04, Practicals-2) Theory: 60 Lectures

Section A: Physical Chemistry-1 (30 Lectures)

Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation.

Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

(10 Lectures)

Chemical Equilibrium:

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between G and G^0 , Le Chatelier's principle. Relationships between K_P , K_C and K_X for reactions involving ideal gases.

(8 Lectures)

Ionic Equilibria:

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

(12 Lectures)

Section B: Organic Chemistry-2 (30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.

Bodoland University

Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (upto 4 carbons on benzene).

(8 Lectures)

Alkyl and Aryl Halides

Alkyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution (S_N1, S_N2 and S_Ni)reactions.

Preparation: from alkenes and alcohols.

Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.

Aryl Halides *Preparation:* (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.

Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group)and effect of nitro substituent. Benzyne Mechanism: KNH₂/NH₃ (or NaNH₂/NH₃).

Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

(8 Lectures)

Alcohols, Phenols and Ethers (Upto 5 Carbons)

Alcohols: *Preparation:* Preparation of 1°, 2° and 3° alcohols: using Grignard reagent, Esterhydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.

Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk. KMnO₄, acidic dichromate, conc. HNO₃). Oppeneauer oxidation *Diols:* (Upto 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) *Preparation:* Cumene hydroperoxide method, from diazonium salts. *Reactions:* Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer-Tiemann Reaction, Gattermann-Koch Reaction, Houben-Hoesch Condensation, Schotten – Baumann Reaction.

Ethers (aliphatic and aromatic): Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone andbenzaldehyde).

Preparation: from acid chlorides and from nitriles.

Reactions - Reaction with HCN, ROH, NaHSO₃, NH₂-G derivatives. Iodoform test. Aldol

Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley reduction.

(14 Lectures)

Reference Books:

Graham Solomon, T.W., Fryhle, C.B. & Dnyder, S.A. Organic Chemistry, John
Wiley & Sons (2014).
McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning
India Edition, 2013.
Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New
Delhi (1988).
Finar, I.L. Organic Chemistry (Vol. I & II), E.L.B.S.
Morrison, R.T. & Boyd, R.N. Organic Chemistry, Pearson, 2010.
Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.
Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning
India Pvt. Ltd., New Delhi (2009).
Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York
(1985).

GE-2 LAB: Chemistry-2 LAB

60 Lectures

Section A: Physical Chemistry

Thermochemistry

- 1. Determination of heat capacity of calorimeter for different volumes.
- 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Determination of enthalpy of ionization of acetic acid.
- 4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
- 5. Determination of enthalpy of hydration of copper sulphate.
- 6. Study of the solubility of benzoic acid in water and determination of ΔH .

Ionic equilibria

pH measurements

Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.

- a) Preparation of buffer solutions:
- (i) Sodium acetate-acetic acid
- (ii) Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical

values.

Section B: Organic Chemistry

- 1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
- 2. Criteria of Purity: Determination of melting and boiling points.
- 3. Preparations: Mechanism of various reactions involved to be discussed. Recrystallization, determination of melting point and calculation of quantitative yields to be done.
- (a) Bromination of Phenol/Aniline
- (b) Benzoylation of amines/phenols
- (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone.

Reference Books

□ Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Text book of Practical Organic Chemistry*, Prentice-Hall, 5th edition, 1996.
 □ Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry* Orient-Longman, 1960.
 □ Khosla, B. D.; Garg, V. C. & Gulati, A. *Senior Practical Physical Chemistry*, R. Chand & Co.: New Delhi (2011).

GE-3: Chemistry-3

(SOLUTIONS, PHASE EQUILIBRIA, CONDUCTANCE, ELECTROCHEMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY-II)

(Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Section A: Physical Chemistry-2 (30 Lectures) Solutions

Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes.

Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.

(8 Lectures)

Phase Equilibria

Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl₃-H₂O and Na-K only).

(8 Lectures)

Conductance

Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions.

Transference number and its experimental determination using Hittorf and Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt. Conductometric titrations (only acid-base).

(6 Lectures)

Electrochemistry

Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: G, H and S from EMF data.

Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge.

pH determination using hydrogen electrode and quinhydrone electrode.

Potentiometric titrations -qualitative treatment (acid-base and oxidation-reduction only).

(8 Lectures)

Section B: Organic Chemistry-3

(30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Carboxylic acids and their derivatives

Carboxylic acids (aliphatic and aromatic)

Preparation: Acidic and Alkaline hydrolysis of esters.

Reactions: Hell-Vohlard - Zelinsky Reaction.

Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)

Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion.

Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin condensation. (6 Lectures)

Amines and Diazonium Salts

Amines (Aliphatic and Aromatic): (Upto 5 carbons)

Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction.

Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO₂,Schotten–Baumann Reaction. Electrophilic substitution (case aniline): nitration, bromination, sulphonation.

Diazonium salts: *Preparation*: from aromatic amines.

Reactions: conversion to benzene, phenol, dyes.

(6 Lectures)

Molecules of Life:

Amino Acids, Peptides and Proteins:

Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis.

Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins.

(3 Lectures)

Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disaccharides (sucrose, cellobiose, maltose, lactose) and polysaccharides (starch and cellulose) excluding their structure elucidation.

(4 Lectures)

Enzymes:

Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance.

(3 Lectures)

Nucleic Acids:

Components of Nucleic acids: Adenine, guanine, thymine and cytosine (structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA).

(4 Lectures)

Lipids:

Introduction to lipids, classification.

Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number.

(2 Lectures)

Concept of Energy in Biosystems:

Calorific value of food. Standard caloric content of carbohydrates, proteins and fats. ATP: the universal currency of cellular energy.

(2 Lectures)

Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry, Cengage Learning
India Pvt. Ltd.: New Delhi (2009).
Mahan, B.H. University Chemistry, 3rd Ed. Narosa (1998).
Petrucci, R.H. General Chemistry, 5th Ed., Macmillan Publishing Co.: New York
(1985).
Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.

Ltd. (Pearson Education).
□ Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
□ Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
□ Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7thEd., W. H. Freeman.

☐ Berg, J.M., Tymoczko, J.L. & Stryer, L. *Biochemistry*, W.H. Freeman, 2002.

GE-3 LAB: Chemistry-3 LAB

60 Lectures

Section A: Physical Chemistry Distribution

Study of the equilibrium of one of the following reactions by the distribution method:

$$I_2(aq) + I(aq) I_3(aq)$$
 $Cu^{2+}(aq) + xNH_2(aq) [Cu(NH_3)_x]^{2+}$

Phase equilibria

- a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.
- b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.
- c) Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.

Conductance

- 1. Determination of cell constant
- 2. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- 3. Perform the following conductometric titrations:
 - a. Strong acid vs. strong base
 - b. Weak acid vs. strong base

Potentiometry

- 1. Perform the following potentiometric titrations:
- i. Strong acid vs. strong base
- ii. Weak acid vs. strong base
- iii. Potassium dichromate vs. Mohr's salt

Section B: Organic Chemistry

I. Systematic Qualitative Organic Analysis of Organic Compounds possessing

monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

II.

- 1. Separation of amino acids by paper chromatography
- 2. Determination of the concentration of glycine solution by formylation method.
- 3. Titration curve of glycine
- 4. Action of salivary amylase on starch
- 5. Effect of temperature on the action of salivary amylase on starch.
- 6. Differentiation between a reducing and a non-reducing sugar.

Reference Books:

Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Tex
book of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.
Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R
Chand & Co.: New Delhi (2011).
Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry,
Universities Press.

GE-4: Chemistry-4 (TRANSITION METAL & COORDINATION CHEMISTRY, STATES OF MATTER & CHEMICAL KINETICS)

(Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Section A: Inorganic Chemistry-2 (30 Lectures)

Transition Elements (3d series)

General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu.

Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).

(12 Lectures)

Coordination Chemistry

Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). Structural and stereoisomerism in complexes with coordination numbers 4 and 6.

Drawbacks of VBT. IUPAC system of nomenclature.

(8 Lectures)

Crystal Field Theory

Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors affecting the magnitude of D. Spectrochemical series. Comparison of CFSE for Oh and Td complexes, Tetragonal distortion of octahedral geometry.

Jahn-Teller distortion, Square planar coordination.

(10 Lectures)

Section B: Physical Chemistry-3 (30 Lectures)

Kinetic Theory of Gases

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation.

Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Andrews isotherms of CO_2 .

Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation – derivation not required) and their importance.

Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

(8 Lectures)

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only).

(6 Lectures)

Solids

Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X–Ray diffraction by crystals, Bragg's law. Structures of NaCl, KCl and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals.

(8 Lectures)

Chemical Kinetics

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction. Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half—life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation.

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

(8 Lectures)

Reference Books:

Barrow, G.M. <i>Physical Chemistry</i> Tata McGraw-Hill (2007).
Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning
India Pvt. Ltd., New Delhi (2009).
Mahan, B.H. <i>University Chemistry</i> 3rd Ed. Narosa (1998).
Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York
(1985).
Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
Shriver, D.F. & Atkins, P.W. <i>Inorganic Chemistry</i> , Oxford University Press.
Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.
Rodgers, G.E. Inorganic & Solid State Chemistry, Cengage Learning India Ltd.,
2008.

GE-4 LAB: Chemistry-4 LAB

60 Lectures

Section A: Inorganic Chemistry

Semi-micro qualitative analysis (using H₂S or other methods) of mixtures - not more than four ionic species (two anions and two cations, excluding insoluble salts) out of the following:

(Spot tests should be carried out wherever feasible)

- 1. Estimate the amount of nickel present in a given solution as bis (dimethyl glyoximato) nickel (II) or aluminium as oximate in a given solution gravimetrically.
- 2. Estimation of (i) Mg²⁺ or (ii) Zn²⁺ by complexometric titrations using EDTA.
- 3. Estimation of total hardness of a given sample of water by complexometric titration.

Section B: Physical Chemistry

- (I) Surface tension measurement (use of organic solvents excluded).
 - a) Determination of the surface tension of a liquid or a dilute solution using a stalagmometer.
 - b) Study of the variation of surface tension of a detergent solution with concentration.
- (II) Viscosity measurement (use of organic solvents excluded).
 - a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald's viscometer.
 - b) Study of the variation of viscosity of an aqueous solution with concentration of

solute.

(III) Chemical Kinetics

Study the kinetics of the following reactions.

- 3. Initial rate method: Iodide-persulphate reaction
- 4. Integrated rate method:
 - c. Acid hydrolysis of methyl acetate with hydrochloric acid.
 - d. Saponification of ethyl acetate.
 - e. Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of methyl acetate.

Reference Books:

Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
 Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
 Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011).

BODOLAND UNIVERSITY

SYLLABUS FOR B.Sc. CHEMISTRY (CBCS)

(Regular Course)

Bodoland University

Kokrajhar-783 370, Assam, India

B.Sc. (Regular Course)

Sem.	CORE COURSE (12)	Ability Enhancement Compulsory Course (AECC) (2)	Skill Enhancement Course (SEC) (4)	Discipline Specific Elective (DSE) (6)
I	DSC-1 A	(English/Hindi/MIL		
	DSC-2 A (Chemistry-1)	Communication)		
	DSC-3 A			
II	DSC-1 B	Environmental Science		
	DSC-2 B (Chemistry-2)			
	DSC-3 B			
III	DSC-1 C		SEC-1	
	DSC-2 C (Chemistry-3)		(Basic Analytical	
	DSC-3 C		Chemistry)	
IV	DSC-1 D		SEC-2	
	DSC-2 D (Chemistry-4)		(Fuel Chemistry)	
	DSC-3 D			
V			SEC-3	DSE-1 A
			(Chemical Technology	DSE-2 A
			& Society)	(Analytical
				Methods in
				Chemistry)
				DSE-3 A
VI			SEC-4	DSE-1 B
			(Chemistry of	DSE-2 B
			Cosmetics &	(Instrumental
			Perfumes)	Methods of
				Chemical
				Analysis)
				DSE-3 B

Curriculum Structures for B.Sc. (Regular Course) (Physics, Chemistry, Mathematics, Botany and Zoology) No. of papers =12+12=24, Total Credits= 120 Total Marks=2100

	SEMESTER-I					
Paper Code	Course	L+T+P	Credit	End Sem	Internal	Total
				Marks	Marks	Marks
Paper-101R	DSC-1A	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
CHY-102R	DSC-2A:	4+0+2	6	60(L)+20(P)	20	100
	Chemistry-1					
Paper-103R	DSC-3A	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
COMM-	AECC-1:	2	2	50(L)	-	50
104HR	(English					
	/Hindi/MIL					
	Communication)					
Total			20	290	60	350

	SEMESTER-II					
Paper Code	Course	L+T+P	Credit	End Sem	Internal	Total
				Marks	Marks	Marks
Paper-201R	DSC-1B	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
CHY -202R	DSC-2B:	4+0+2	6	60(L)+20(P)	20	100
	Chemistry-2					
Paper-203R	DSC-3B	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
ENV-	AECC-2:	2	2	50(L)	-	50
204HR	Environmental					
	Science					
Total			20	290	60	350

	SEMESTER-III					
Paper Code	Course	L+T+P	Credit	End Sem	Internal	Total
				Marks	Marks	Marks
Paper-301R	DSC-1C	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
CHY -302R	DSC-2C:	4+0+2	6	60(L)+20(P)	20	100
	Chemistry-3					
Paper-303R	DSC-3C	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
CHY-	SEC-1: Basic	2	2	50(L)	-	50
304HR	Analytical					
	Chemistry					
Total			20	290	60	350

	SEMESTER-IV					
Paper Code	Course	L+T+P	Credit	End Sem	Internal	Total
				Marks	Marks	Marks
Paper-401R	DSC-1D	4+0+2	6	60(L)+20(P)	20	100
_		5+1+0		60(L)+20(T)		
CHY -402R	DSC-2D:	4+0+2	6	60(L)+20(P)	20	100
	Chemistry-4					
Paper-403R	DSC-3D	4+0+2	6	60(L)+20(P)	20	100
		5+1+0		60(L)+20(T)		
CHY-	SEC-2: Fuel	2	2	50(L)	-	50
404HR	Chemistry					
Total			20	290	60	350

		SE	MESTER-V	•		
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
Paper-501R	DSE-1A	4+0+2 5+1+0	6	60(L)+20(P) 60(L)+20(T)	20	100
CHY-HR	DSE-2A: Analytical Methods in Chemistry	4+0+2	6	60(L)+20(P)	20	100
Paper-503R	DSE-3A	4+0+2 5+1+0	6	60(L)+20(P) 60(L)+20(T)	20	100
CHY-504R	SEC-3: Chemical Technology & Society	2	2	50(L)	-	50
Total	_		20	290	60	350

	SEMESTER-VI					
Paper Code	Course	L+T+P	Credit	End Sem Marks	Internal Marks	Total Marks
Paper-601R	DSE-1B	4+0+2 5+1+0	6	60(L)+20(P) 60(L)+20(T)	20	100
CHY-HR	DSE-2B: Instrumental Methods of Chemical Analysis	4+0+2	6	60(L)+20(P)	20	100
Paper-603R	DSE-3B	4+0+2 5+1+0	6	60(L)+20(P) 60(L)+20(T)	20	100
CHY-604R	SEC-4: Chemistry of Cosmetics & Perfumes	2	2	50(L)	-	50
Total			20	290	60	350

SEMESTER-I

DSC-2A: Chemistry-1

(ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY

&ALIPHATIC HYDROCARBONS) (Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Section A: Inorganic Chemistry-1

(30 Periods)

Atomic Structure: Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure.

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2 , Schrödinger equation for hydrogen atom. Radial and angular parts of the hydrogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m_i and m_s . Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (m_s) .

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations. (14 Lectures)

Chemical Bonding and Molecular Structure

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.

MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for *s-s*, *s-p* and *p-p* combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of *s-p* mixing) and heteronuclear diatomic molecules such as CO, NO and NO⁺. Comparison of VB and MO approaches. (16 Lectures)

Section B: Organic Chemistry-1 (30 Periods)

Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis.

Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule. (8 Lectures)

Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; *cis-trans* nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E/Z Nomenclature (for upto two C=C systems). (10 Lectures)

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons). *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO₄) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC₂and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO₄,ozonolysis and oxidation with hot alk. KMnO₄. (12 Lectures)

Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
Cotton, F.A., Wilkinson, G. & Gaus, P.L. <i>Basic Inorganic Chemistry</i> , 3 rd ed., Wiley.
Douglas, B.E., McDaniel, D.H. & Alexander, J.J. Concepts and Models in
Inorganic Chemistry, John Wiley & Sons.
Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry:
Principles of Structure and Reactivity, Pearson Education India, 2006.
Graham Solomon, T.W., Fryhle, C.B. & Dnyder, S.A. Organic Chemistry, John
Wiley & Sons (2014).
McMurry, J.E. Fundamentals of Organic Chemistry, 7 th Ed. Cengage Learning

India Edition, 2013.
Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New
Delhi (1988).
Eliel, E.L. Stereochemistry of Carbon Compounds, Tata McGraw Hill education
2000.
Finar, I.L. Organic Chemistry (Vol. I & II), E.L.B.S.
Morrison, R.T. & Boyd, R.N. Organic Chemistry, Pearson, 2010.
Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.

DSC-2A LAB: Chemistry-1 LAB 60 Lectures

Section A: Inorganic Chemistry - Volumetric Analysis

- 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 2. Estimation of oxalic acid by titrating it with KMnO₄.
- 3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.
- 4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.
- 5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry

- 1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements).
- 2. Separation of mixtures by Chromatography: Measure the R_f value in each case (combination of two compounds to be given)
- 3. Identify and separate the components of a given mixture of two amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography.
- 4. Identify and separate the sugars present in the given mixture by paper chromatography.

C1 (chice books.
	Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
	Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
	Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G.
	Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
	Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

SEMESTER-II

DSC-2B: Chemistry-2

(CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC

CHEMISTRY-I)

(Credits: Theory-04, Practicals-2)

Theory: 60 Lectures

Section A: Physical Chemistry-1

(30 Lectures)

Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation.

Statement of Third Law of thermodynamics and calculation of absolute entropies of substances. (10 Lectures)

Chemical Equilibrium:

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between G and G^0 , Le Chatelier's principle. Relationships between K_P , K_C and K_X for reactions involving ideal gases. (8 Lectures)

Ionic Equilibria:

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

(12 Lectures)

Section B: Organic Chemistry-2

(30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.

Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (upto 4 carbons on benzene). (8 Lectures)

Alkyl and Aryl Halides

Alkyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution (Sn1, Sn2 and Sni) reactions.

Preparation: from alkenes and alcohols.

Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.

Aryl Halides *Preparation:* (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.

Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH₂/NH₃ (or NaNH₂/NH₃). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides. (8 Lectures)

Alcohols, Phenols and Ethers (Upto 5 Carbons)

Alcohols: *Preparation:* Preparation of 1°, 2° and 3° alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.

Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk. KMnO₄, acidic dichromate, conc. HNO₃). Oppeneauer oxidation Diols: (Upto 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) *Preparation:* Cumene hydroperoxide method, from diazonium salts. *Reactions:* Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer-Tiemann Reaction, Gattermann-Koch Reaction, Houben-Hoesch Condensation, Schotten – Baumann Reaction.

Ethers (aliphatic and aromatic): Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde).

Preparation: from acid chlorides and from nitriles.

Reactions – Reaction with HCN, ROH, NaHSO₃, NH₂-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley reduction.

(14 Lectures)

Ш	Graham Solomon, T.W., Fryhle, C.B. & Dnyder, S.A. Organic Chemistry, John
	Wiley & Sons (2014).
	McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning
	India Edition, 2013.
	Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New
	Delhi (1988).
	Finar, I.L. Organic Chemistry (Vol. I & II), E.L.B.S.
	Morrison, R.T. & Boyd, R.N. Organic Chemistry, Pearson, 2010.
	Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.
	Barrow, G.M. <i>Physical Chemistry</i> Tata McGraw-Hill (2007).
	Castellan, G.W. <i>Physical Chemistry</i> 4th Ed. Narosa (2004).
	Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning
	India Pvt. Ltd., New Delhi (2009).
	Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
	Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York
	(1985)

DSC-2B LAB: Chemistry-2 LAB

60 Lectures

Section A: Physical Chemistry

Thermochemistry

- 1. Determination of heat capacity of calorimeter for different volumes.
- 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Determination of enthalpy of ionization of acetic acid.
- 4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
- 5. Determination of enthalpy of hydration of copper sulphate.
- 6. Study of the solubility of benzoic acid in water and determination of ΔH .

Ionic equilibria

pH measurements

Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.

- a) Preparation of buffer solutions:
- b) Sodium acetate-acetic acid
- c) Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry

- 1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
- 2. Criteria of Purity: Determination of melting and boiling points.
- 3. Preparations: Mechanism of various reactions involved to be discussed. Recrystallization, determination of melting point and calculation of quantitative yields to be done.
 - (a) Bromination of Phenol/Aniline
 - (b) Benzoylation of amines/phenols
 - (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone.

Book of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.
Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R.
Chand & Co.: New Delhi (2011).

SEMESTER-III

DSC-2C: Chemistry-3

(SOLUTIONS, PHASE EQUILIBRIA, CONDUCTANCE, ELECTROCHEMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY-II)

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Section A: Physical Chemistry-2

(30 Lectures)

Solutions

Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes.

Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids-Principle of steam distillation. Nernst distribution law and its applications, solvent extraction. (8 Lectures)

Phase Equilibria

Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius—Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl₃-H₂O and Na-K only). (8 Lectures)

Conductance

Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions.

Transference number and its experimental determination using Hittorf and Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt. Conductometric titrations (only acid-base). (6 Lectures)

Electrochemistry

Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: G, H and S from EMF data.

Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge.

pH determination using hydrogen electrode and quinhydrone electrode.

Potentiometric titrations -qualitative treatment (acid-base and oxidation-reduction only).

(8 Lectures)

Section B: Organic Chemistry-3

(30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Carboxylic acids and their derivatives

Carboxylic acids (aliphatic and aromatic)

Preparation: Acidic and Alkaline hydrolysis of esters.

Reactions: Hell-Vohlard - Zelinsky Reaction.

Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)

Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and theirinterconversion.

Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin condensation. (6 Lectures)

Amines and Diazonium Salts

Amines (Aliphatic and Aromatic): (Upto 5 carbons)

Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction.

Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO₂, Schotten–Baumann Reaction. Electrophilic substitution (case aniline): nitration, bromination, sulphonation.

Diazonium salts: *Preparation*: from aromatic amines.

Reactions: conversion to benzene, phenol, dyes.

(6 Lectures)

Molecules of Life:

Amino Acids, Peptides and Proteins:

Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis.

Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins.

(3 Lectures)

Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation.

(4 Lectures)

Enzymes:

Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance. (3 Lectures)

Nucleic Acids:

Components of Nucleic acids: Adenine, guanine, thymine and cytosine (structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types

of RNA). (4 Lectures)

Lipids:

Introduction to lipids, classification.

Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number.

(2 Lectures)

Concept of Energy in Biosystems:

Calorific value of food. Standard caloric content of carbohydrates, proteins and fats. ATP: the universal currency of cellular energy.

(2 Lectures)

Reference Books:

Ш	Sarrow, G.M. <i>Physical Chemistry</i> Tata McGraw-Hill (2007)	•
	Castellan, G.W. <i>Physical Chemistry</i> 4th Ed. Narosa (2004).	

□ Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry, Cengage Learning India Pvt. Ltd.: New Delhi (2009).

☐ Mahan, B.H. *University Chemistry*, 3rd Ed. Narosa (1998).

□ Petrucci, R.H. General Chemistry, 5th Ed., Macmillan Publishing Co.: New York (1985).

☐ Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

☐ Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

☐ Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

□ Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7thEd., W. H. Freeman.

☐ Berg, J.M., Tymoczko, J.L. &Stryer, L. *Biochemistry*, W.H. Freeman, 2002.

DSC-2C LAB: Chemistry-3 LAB

60 Lectures

Section A: Physical Chemistry

Distribution

Study of the equilibrium of one of the following reactions by the distribution method:

(i)
$$I_2(aq) + I \rightarrow I_3(aq)$$

(i)
$$I_2(aq) + I \rightarrow I_3(aq)$$

(ii) $Cu^{2+}(aq) + nNH_3 \rightarrow [Cu(NH_3)_n]^{2+}$

Phase equilibria

- (i) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.
- (ii) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.
- (iii) Study of the variation of mutual solubility temperature with concentration for

the phenol water system and determination of the critical solubility temperature.

Conductance

- (i) Determination of cell constant
- (ii) Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- (iii) Perform the following conductometric titrations:
 - (a) Strong acid vs. strong base
 - (b) Weak acid vs. strong base

Potentiometry

Perform the following potentiometric titrations:

- (a) Strong acid vs. strong base
- (b) Weak acid vs. strong base
- (c) Potassium dichromate vs. Mohr's salt

Section B: Organic Chemistry

I. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

II.

- (a) Separation of amino acids by paper chromatography
- (b) Determination of the concentration of glycine solution by formylation method.
- (c) Titration curve of glycine
- (d) Action of salivary amylase on starch
- (e) Effect of temperature on the action of salivary amylase on starch.
- (f) Differentiation between a reducing and a non-reducing sugar.

Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Text
book of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.
Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R.
Chand & Co.: New Delhi (2011).
Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry,
Universities Press.

SEC-1

BASIC ANALYTICAL CHEMISTRY

(Credits: 02) 30 Lectures

Introduction: Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling. Importance of accuracy, precision and sources of error in analytical measurements. Presentation of experimental data and results, from the point of view of significant figures.

Analysis of soil: Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators.

Determination of pH of soil samples.

Estimation of Calcium and Magnesium ions as Calcium carbonate by complexometric titration.

Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods.

Determination of pH, acidity and alkalinity of a water sample.

Determination of dissolved oxygen (DO) of a water sample.

Analysis of food products: Nutritional value of foods, idea about food processing and food preservations and adulteration.

Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc.

Analysis of preservatives and colouring matter.

Chromatography: Definition, general introduction on principles of chromatography, paper chromatography, TLC etc.

Paper chromatographic separation of mixture of metal ion (Fe³⁺ and Al³⁺).

To compare paint samples by TLC method.

Ion-exchange: Column, ion-exchange chromatography etc.

Determination of ion exchange capacity of anion / cation exchange resin (using batch procedure if use of column is not feasible).

Analysis of cosmetics: Major and minor constituents and their function

Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate.

Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, Zinc oxide and Calcium carbonate by complexometric titration.

Suggested Applications (Any one):

To study the use of phenolphthalein in trap cases.

To analyze arson accelerants.

To carry out analysis of gasoline.

Suggested Instrumental demonstrations:

Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by

flame photometry.

Spectrophotometric determination of Iron in Vitamin /Dietary Tablets. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drinks.

Reference Books:

- 1. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7thEd. Wadsworth Publishing Company Ltd., Belmont, California, USA,1988.
- koog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007.
- 3. Skoog, D.A.; West, D.M. & Holler, F.J. Analytical Chemistry: An Introduction 6th Ed., Saunders College Publishing, Fort Worth, Philadelphia (1994).
 4. Harris, D. C. Quantitative Chemical Analysis, 9th ed. Macmillan Education,
- 5. Dean, J. A. Analytical Chemistry Handbook, McGraw Hill, 2004.
- 6. Day, R. A. & Underwood, A. L. Quantitative Analysis, Prentice Hall of India,
- 7. Freifelder, D.M. *Physical Biochemistry* 2ndEd., W.H. Freeman & Co., N.Y. USA (1982).
- 8. Cooper, T.G. The Tools of Biochemistry, John Wiley & Sons, N.Y. USA. 16
- 9. Vogel, A. I. *Vogel's Qualitative Inorganic Analysis* 7thEd., Prentice Hall, 1996.
- 10. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6thEd., Pearson,
- 11. Robinson, J.W. Undergraduate Instrumental Analysis 5thEd., Marcel Dekker, Inc., New York (1995).
- 12. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

SEMESTER-IV

DSC-2D: Chemistry-4

(TRANSITION METAL & COORDINATION CHEMISTRY, STATES OFMATTER &

CHEMICAL KINETICS)

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Section A: Inorganic Chemistry-2

(30 Lectures)

Transition Elements (3d series)

General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu.

Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).

(12 Lectures)

Coordination Chemistry

Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). Structural and stereoisomerism in complexes with coordination numbers 4 and 6.

Drawbacks of VBT. IUPAC system of nomenclature.

(8 Lectures)

Crystal Field Theory

Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors affecting the magnitude of D. Spectrochemical series. Comparison of CFSE for Oh and Td complexes, Tetragonal distortion of octahedral geometry.

Jahn-Teller distortion, Square planar coordination.

(10 Lectures)

(30 Lectures)

Section B: Physical Chemistry-3

Kinetic Theory of Gases

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation.

Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Andrews isotherms of CO₂.

Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation – derivation not required) and their importance.

Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

(8 Lectures)

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and

determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only).

(6 Lectures)

Solids

Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X–Ray diffraction by crystals, Bragg's law. Structures of NaCl, KCl and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals. (8 Lectures)

Chemical Kinetics

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction. Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half—life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation.

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only). (8 Lectures)

Reference Books:

Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning
India Pvt. Ltd., New Delhi (2009).
Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York
(1985).
Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
Shriver, D.F. & Atkins, P.W. <i>Inorganic Chemistry</i> , Oxford University Press.
Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.
Rodgers, G.E. Inorganic & Solid State Chemistry, Cengage Learning India Ltd.,
2008.

DSC-2D LAB: Chemistry-4 LAB 60 Lectures

Section A: Inorganic Chemistry

Semi-micro qualitative analysis (using H₂S or other methods) of mixtures - not more than four ionic species (two anions and two cations, excluding insoluble salts) out of the following:

Cations :
$$NH_4^+$$
, Pb^{2+} , Bi^{3+} , Cu^{2+} , Cd^{2+} , Fe^{3+} , Al^{3+} , Co^{2+} , Ni^{2+} , Mn^{2+} , Zn^{2+} , Ba^{2+} , Sr^{2+} , Ca^{2+} , K^+

Anions:
$$CO_3^{2-}$$
, S^{2-} , SO_3^{2-} , $S_2O_3^{2-}$, NO_3^{-} , CH_3COO^- , CI^- , Br^- , I^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , $C_2O_4^{2-}$, F (Spot tests should be carried out wherever feasible).

1. Estimate the amount of nickel present in a given solution as bis (dimethyl glyoximato) nickel (II) or aluminium as oximate in a given solution gravimetrically.

- 2. Estimation of (i) Mg²⁺ or (ii) Zn²⁺ by complexometric titrations using EDTA.
- 3. Estimation of total hardness of a given sample of water by complexometric titration.

Section B: Physical Chemistry

Surface tension measurement (use of organic solvents excluded).

- 1. Determination of the surface tension of a liquid or a dilute solution using a stalagmometer.
- 2. Study of the variation of surface tension of a detergent solution with concentration.

Viscosity measurement (use of organic solvents excluded).

- 1. Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald's viscometer.
- 2. Study of the variation of viscosity of an aqueous solution with concentration of solute.

Chemical Kinetics

Study the kinetics of the following reactions.

- 1. Initial rate method: Iodide-persulphate reaction
- 2. Integrated rate method:
 - a. Acid hydrolysis of methyl acetate with hydrochloric acid.
 - b. Saponification of ethyl acetate.
 - c. Compare the strengths of HCl and H_2SO_4 by studying kinetics of hydrolysis of methyl acetate.

Reference Books:

Ш	Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
	Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
	Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R
	Chand & Co.: New Delhi (2011).

SEC-2

FUEL CHEMISTRY

(Credits: 02) 30 Lectures

Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value.

Coal: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas—composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining.

Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications.

Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived

from biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels. Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting)Solid and semisolid lubricants, synthetic lubricants.

Properties of lubricants (viscosity index, cloud point, pore point) and their determination.

Reference Books:

Stocchi, E. *Industrial Chemistry*, Vol-I, Ellis Horwood Ltd. UK (1990).
 Jain, P.C. & Jain, M. *Engineering Chemistry* Dhanpat Rai & Sons, Delhi.
 Sharma, B.K. & Gaur, H. *Industrial Chemistry*, Goel Publishing House, Meerut (1996).

SEMESTER-V

CHEMISTRY-DSE-2A-1: ANALYTICAL METHODS IN CHEMISTRY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Qualitative and quantitative aspects of analysis:

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals. (5 Lectures)

Optical methods of analysis:

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law.

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument.

Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of composition of metal complexes using Job's method of continuous variation and mole ratio method.

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques.

Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples. (25 Lectures)

Thermal methods of analysis:

Theory of thermogravimetry (TG), basic principle of instrumentation.

Techniques for quantitative estimation of Ca and Mg from their mixture. (5 Lectures)

Electroanalytical methods:

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. (10 Lectures)

Separation techniques:

Solvent extraction: Classification, principle and efficiency of the technique.

Mechanism of extraction: extraction by solvation and chelation.

Technique of extraction: batch, continuous and counter current extractions.

Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and non-aqueous media.

Chromatography: Classification, principle and efficiency of the technique.

Mechanism of separation: adsorption, partition & ion exchange.

Development of chromatograms: frontal, elution and displacement methods.

Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC.

Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR, Chiral solvents and chiral shift reagents. Chiral chromatographic techniques using chiral columns (GC and HPLC).

Role of computers in instrumental methods of analysis.

(15 Lectures)

Reference Books:

Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. voget's Textbook of
Quantitative Chemical Analysis, John Wiley & Sons, 1989.
□ Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of
Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California,
USA,1988.
☐ Christian, G.D; <i>Analytical Chemistry</i> , 6th Ed. John Wiley & Sons, New York, 2004.
☐ Harris, D. C. <i>Exploring Chemical Analysis</i> , Ed. New York, W.H. Freeman, 2001.
☐ Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age,
InternationalPublisher, 2009.
☐ Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis,
Cengage Learning India Ed.
☐ Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles
Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979.
☐ Ditts, R.V. Analytical Chemistry; Methods of Separation, van Nostrand, 1974.

DSE-2A-1 LAB: ANALYTICAL METHODS IN CHEMISTRY 60 Lectures

I. Separation Techniques Chromatography:

- (a) Separation of mixtures
- (i) Paper chromatographic separation of Fe³⁺, Al³⁺, and Cr³⁺.
- (ii) Separation and identification of the monosaccharides present in the given mixture(glucose & fructose) by paper chromatography. Reporting the $R_{\rm f}$ values.
- (b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their $R_{\rm f}$ values.
- (c) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC.

II. Solvent Extractions:

- (i) To separate a mixture of Ni²⁺ & Fe²⁺ by complexation with DMG and extracting the Ni²⁺-DMG complex in chloroform, and determine its concentration by spectrophotometry.
- (ii) Solvent extraction of zisconium with amberliti LA-1, separation from a mixture of irons and gallium.

- (iii)Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.
- (iv)Determination of Na, Ca, Li in cola drinks and fruit juices using flame photometric techniques.

Analysis of soil:

- (i) Determination of pH of soil.
- (ii) Total soluble salt
- (iii) Estimation of calcium, magnesium, phosphate, nitrate

Ion exchange:

- (i) Determination of exchange capacity of cation exchange resins and anion exchange resins.
- (ii) Separation of metal ions from their binary mixture.
- (iii) Separation of amino acids from organic acids by ion exchange chromatography.

Spectrophotometry

- a. Determination of pKa values of indicator using spectrophotometry.
- b. Structural characterization of compounds by infrared spectroscopy.
- c. Determination of dissolved oxygen in water.
- d. Determination of chemical oxygen demand (COD).
- e. Determination of Biological oxygen demand (BOD).
- f. Determine the composition of the Ferric-salicylate/ferric-thiocyanate complex by Job's method.

Reference Books:

☐ Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. Vogel's Textbook of
Quantitative Chemical Analysis, John Wiley & Sons, 1989.
□ Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of
Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California,
USA,1988.
☐ Christian, Gary D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York,
2004.
☐ Harris, Daniel C: Exploring Chemical Analysis, Ed. New York, W.H. Freeman,
2001.
☐ Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International
Publisher, 2009.
□ Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis,
Cengage Learning India Ed.
☐ Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles
Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979.

SEC-3

CHEMICAL TECHNOLOGY & SOCIETY

(Credits: 02)

Theory: 30 Lectures

Chemical Technology

Basic principles of distillation, solvent extraction, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption. An introduction into the scope of different types of equipment needed in chemical technology, including reactors, distillation columns, extruders, pumps, mills, emulgators. Scaling up operations in chemical industry. Introduction to clean technology.

Society

Exploration of societal and technological issues from a chemical perspective. Chemical and scientific literacy as a means to better understand topics like air and water (and the trace materials found in them that are referred to as pollutants); energy from natural sources (i.e. solar and renewable forms), from fossil fuels and from nuclear fission; materials like plastics and polymers and their natural analogues, proteins and nucleic acids, and molecular reactivity and interconversions from simple examples like combustion to complex instances like genetic engineering and the manufacture of drugs.

Reference Book:

□ John W. Hill, Terry W. McCreary & Doris K. Kolb, *Chemistry for changing times* 13th Ed, Prentice-Hall (2012).

SEMESTER-VI

CHEMISTRY-DSE-2A-2: INSTRUMENTAL METHODS OF CHEMICAL

ANALYSIS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Introduction to spectroscopic methods of analysis:

Recap of the spectroscopic methods covered in detail in the core chemistry syllabus: Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation. (4 Lectures)

Molecular spectroscopy:

Infrared spectroscopy:

Interactions with molecules: absorption and scattering. Means of excitation (light sources), separation of spectrum (wavelength dispersion, time resolution), detection of the signal (heat, differential detection), interpretation of spectrum (qualitative, mixtures, resolution), advantages of Fourier Transform (FTIR). Samples and results expected. Applications: Issues of quality assurance and quality control, Special problems for portable instrumentation and rapid detection.

UV-Visible/Near IR – emission, absorption, fluorescence and photoaccoustic. Excitation sources (lasers, time resolution), wavelength dispersion (gratings, prisms, interference filters, laser, placement of sample relative to dispersion, resolution), Detection of signal (photocells, photomultipliers, diode arrays, sensitivity and S/N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoaccoustic, fluorescent tags).

(16 Lectures)

Separation techniques

Chromatography: Gas chromatography, liquid chromatography, supercritical fluids, Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further analysis(use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis.

Immunoassays and DNA techniques

Mass spectroscopy: Making the gaseous molecule into an ion (electron impact, chemical ionization), Making liquids and solids into ions (electrospray, electrical discharge, laser desorption, fast atom bombardment), Separation of ions on basis of mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Resolution, time and multiple separations, Detection and interpretation (how this is linked to excitation).

(16 Lectures)

Elemental analysis:

Mass spectrometry (electrical discharges).

Atomic spectroscopy: Atomic absorption, Atomic emission, and Atomic fluorescence. Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences). (8 Lectures)

NMR spectroscopy: Principle, Instrumentation, Factors affecting chemical shift, Spin coupling, Applications. (4 Lectures) **Electroanalytical Methods: Potentiometry & Voltammetry** (4 Lectures) **Radiochemical Methods** (4 Lectures) X-ray analysis and electron spectroscopy (surface analysis) (4 Lectures) **Reference books:** ☐ Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Ed. □ Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. ☐ P.W. Atkins: Physical Chemistry. ☐ G.W. Castellan: Physical Chemistry. ☐ C.N. Banwell: Fundamentals of Molecular Spectroscopy. ☐ Brian Smith: Infrared Spectral Interpretations: A Systematic Approach.

DSE-2A-2 LAB: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS 60 Lectures

- 1. Safety Practices in the Chemistry Laboratory
- 2. Determination of the isoelectric pH of a protein.
- 3. Titration curve of an amino acid.

☐ W.J. Moore: Physical Chemistry.

- 4. Determination of the void volume of a gel filtration column.
- 5. Determination of a Mixture of Cobalt and Nickel (UV/Vis spec.)
- 6. Study of Electronic Transitions in Organic Molecules (i.e., acetone in water)
- 7. IR Absorption Spectra (Study of Aldehydes and Ketones)
- 8. Determination of Calcium, Iron, and Copper in Food by Atomic Absorption
- 9. Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and carbon tetrachloride)
- 10. Separation of Carbohydrates by HPLC
- 11. Determination of Caffeine in Beverages by HPLC
- 12. Potentiometric Titration of a Chloride-Iodide Mixture
- 13. Cyclic Voltammetry of the Ferrocyanide/Ferricyanide Couple
- 14. Nuclear Magnetic Resonance
- 15. Use of fluorescence to do "presumptive tests" to identify blood or other body fluids.
- 16. Use of "presumptive tests" for anthrax or cocaine
- 17. Collection, preservation, and control of blood evidence being used for DNA testing

- 18. Use of capillary electrophoresis with laser fluorescence detection for nuclear DNA (Y chromosome only or multiple chromosome)
- 19. Use of sequencing for the analysis of mitochondrial DNA
- 20. Laboratory analysis to confirm anthrax or cocaine
- 21. Detection in the field and confirmation in the laboratory of flammable accelerants or explosives.
- 22. Detection of illegal drugs or steroids in athletes
- 23. Detection of pollutants or illegal dumping
- 24. Fibre analysis

(At least 10 experiments to be performed).

-	•					-		
ĸ	Ωŧ	Δľ	•	nr	Δ	к	ഹ	ks:
1.		LI			·	T)	,,,,	17.7.

□ Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis
Cengage Learning India Ed.
□ Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of
Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA
1988.

SEC-4

CHEMISTRY OF COSMETICS & PERFUMES

(Credits: 02) 30 Lectures

A general study including preparation and uses of the following: Hair dye, hair spray, shampoo, suntan lotions, face powder, lipsticks, talcum powder, nail enamel, creams (cold, vanishing and shaving creams), antiperspirants and artificial flavours. Essential oils and their importance in cosmetic industries with reference to Eugenol, Geraniol, sandalwood oil, eucalyptus, rose oil, 2-phenyl ethyl alcohol, Jasmone, Civetone, Muscone.

Practicals

- 1. Preparation of talcum powder.
- 2. Preparation of shampoo.
- 3. Preparation of enamels.
- 4. Preparation of hair remover.
- 5. Preparation of face cream.
- 6. Preparation of nail polish and nail polish remover.

Reference Books:

ere	ence books:
	Stocchi, E. Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK (1990).
	Jain, P.C. & Jain, M. Engineering Chemistry Dhanpat Rai & Sons, Delhi.
	Sharma, B.K. & Gaur, H. <i>Industrial Chemistry</i> , Goel Publishing House, Meerut (1996).
	X
	A